
Meeting  xpectations:

Intelligent Automation for 

AI-driven Document Understanding

June 30, 2023 Jordy Van Landeghem
jordy@contract.fit

mailto:Jordy@contract.fit


• Lead AI researcher @Contract.fit since 2017

• Ongoing Ph.D. project @KU Leuven on Intelligent Automation (IA) for Artificial 

Intelligence (AI)-Driven Document Understanding (DU) [IA4AI-DU]

• Research interests:

calibration, predictive uncertainty, failure prediction

More details: https://jordy-vl.github.io/

2

whoami

https://jordy-vl.github.io/


• Van Landeghem, J., Blaschko, M., Anckaert, B., & Moens, M. F. (2020). Predictive Uncertainty for Probabilistic 

Novelty Detection in Text Classification. In Proceedings ICML 2020 Workshop on Uncertainty and Robustness in 

Deep Learning. ICML.

• Van Landeghem, J., Blaschko, M., Anckaert, B., & Moens, M. 

F.  (2022). Benchmarking Scalable Predictive Uncertainty in Text Classification. In IEEE Access, vol. 10, pp. 43703-

43737.

• Van Landeghem, J., Blaschko, & Moens, M. F. (2021-2022). Leaps-and-Bounds: Towards Stronger Calibration 

Measures for Structured Output Spaces. [unpublished]

• Van Landeghem, J., Borchmann, L., Tito, R., Pietruszka, M., Jurkiewicz, D., Powalski, R., Józiak, P., Biswas, 

S., Coustaty, M., Stanisławek, T. (2023). ICDAR 2023 Competition on 

Document UnderstanDing of Everything (DUDE). In Proceedings of ICDAR 2023.

• Van Landeghem, J., Tito, R., ..., Anckaert, B., Valveny, E., Blaschko, M, Moens, M. F, & Stanisławek, T. (2023). 

Document Understanding Dataset and Evaluation (DUDE). arXiv preprint arXiv:2305.08455. (under review)

• Van Landeghem, J., Biswas, S., (2023). Beyond Document Page Classification. In ACIIDS 2023 (under review).

3

Selected works

Ongoing explorations:
• Knowledge Distillation for Document Foundation Models

• A Multi-Modal Multi-Exit Architecture for Efficient Document Classification



• Intelligent Automation for AI-driven Document Understanding

• How to enable, measure and improve IA?

• A primer on confidence estimation, calibration and failure prediction

• Linking back to collaborations with CVC

1. Document UnderstanDing of Everything (DUDE)

2. Beyond Document Page Classification

3. Knowledge Distillation for Efficient Document Layout Analysis
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Outline



In any business context, where information 

transfer and inbound communication 

services are an important part of the day-to-

day processes, a vast number of documents 

must be handled. 

To provide customers with the expected 

service levels (in terms of speed, convenience 

and correctness) a lot of time and resources 

are spent on manually categorizing 

documents and extracting crucial 

information.
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Insurance policy Car invoice ID Card

(E)mails Attachments

Police report Accident formRepair invoice

Lead up to my Ph.D. project
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IA4AI-DU

• Baekeland Ph.D. project:   2020-2024

• Consortium involving University and Company

--> Strategic basic research with economic finality

--> Directed towards obtaining a doctorate diploma

Prof. dr. Matthew 

Blaschko

• Machine Learning theory

• Computer Vision

• Active Learning
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What makes automation intelligent?

Intelligent Automation (IA) comprises a compelling class of technologies:

• A subset of Artificial Intelligence (AI) for automation of knowledge work

• Robotic Process Automatic (RPA): the macro on steroids

• Workflow & Business Process Management (BPM)

• jointly capable of solving major world problems

• when combined with people & organizations

• IA allows for the creation of a software-based digital workforce, by mimicking four 
main human capabilities required to perform knowledge work:

1. Vision

2. Language

3. Thinking & Learning

4. Execution

Goal: Taking the robot out of the human, not replacing human workers

Pascal Bornet, Ian Barkin and Jochen 

Wirtz (2020)

build straight-through business processes, which are more 
efficient (productivity, processing speed, cost) and often 

more effective (quality and logic).

https://intelligentautomationbook.com/
https://intelligentautomationbook.com/


Dd : Intelligent Document Processing
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The core value proposition of our product involves 
IA for a variety of document understanding tasks



Document Understanding

Faculty of Engineering Science, Department of Computer Science, HCI unit, 
LIIR lab 9

Document Understanding (DU) comprises a large set of skills, including the ability to holistically 
consume textual and visual elements structured according to rich semantic layouts.

The majority of efforts are directed toward the application-directed tasks of classification and key 
information extraction (KIE) in visually-rich documents (VRDs).

Popular document foundation models: Document Image Transformer (DiT), LayoutLMv3, Donut, 
UDOP, Pix2Struct, ...

Standard benchmark datasets: RVL-CDIP, PubLayNet, DocBank, DocLayNet, (DUDE )…😎



Our solution brings bottom line impact for countless use-cases
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Insurance claims handling

One-click onboarding

Email routing

Personal Finance Management

Automated BookkeepingExpense management

Credit application / 
disbursement

Accounts payable



Process a mix of documents in seconds

Try it now – just sign up via parble.com/signup (the first 300 documents are free 🎁)

Simply integrate Parble using four lines of code 

Extracted data from an invoice Supported document types include
o Invoices
o Receipts
o Purchase orders
o Delivery notes
o Emails
o ID cards
o Passports
o Photos



Motivating example: what are the key ingredients for IA?
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In-

distribution

e.g., novel 

class

label prediction confidence

process
car policy 

cancellation
99%

policy 

number
12-3456-789 95%

license plate 1CHA123 98%

label prediction confidence

process

car policy 

contract 

start

98%

policy 

number
23-4567-890 95%

license plate 2LBZ-548 75%

Automate action

Manual review

Catastrophically 

overconfident

Decision-making under Predictive 

Uncertainty
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Bringing intelligent automation

• Enabling IA involves:

• Confidence estimation

• Operational thresholding for determining automation-risk trade-off

• Robustness to distribution shifts

• Measuring IA involves:

• Calibration metrics
• Confidence ranking

• Improving IA involves:

• Inducing calibration by post-hoc strategies or designing calibrated loss functions
• Predictive uncertainty estimation

• Failure prediction

Today's 

seminar

😉
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Undervalued in DU studies

• As a proxy to the 'popularity' of IA-related topics, I did a comparative 

keyword search in the ICDAR 2021 proceedings.

document 3388

classification 242

key information 56

question 

answering

106

layout analysis 223

calibration/calibrate 33

temperature scaling 0

failure prediction

misclassification 

detection

0

out-of-distribution

OOD

25

predictive uncertainty 0
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Meeting Expectations

Jordy Van Landeghem

July 1, 2023
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ToC
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2. Con�dence Estimation

3. Probability Calibration
3.1 Calibrating our De�nition of Calibration
3.2 Calibration Estimators
3.3 Measuring and Applying Calibration
3.4 Open Problems

4. Failure Prediction
4.1 CSF Ranking Metrics
4.2 Open Problems

5. Intermediate Conclusions
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Notation I

Let X ⊆ Rd denote the input space and Y denote the output space as a
�nite set of discrete labels. Given a sample (x,y) drawn independently and
identically distributed (i.i.d) from an unknown distribution P on X × Y:

De�nition

Probabilistic predictor f : X → ∆Y that outputs a conditional probability
distribution P(y ′|x) over outputs y ′ ∈ Y.

De�nition (Probability Simplex)

Let ∆Y := {v ∈ R|Y|≥0 : ‖v‖1 = 1} be a probability simplex of size |Y| − 1,
where each vertex represents a mutually-exclusive label and each point
has an associated probability vector v [Pistone and Sempi, 1995].

→ Consider for simplicity, a multi-class classi�er where Y = [K ], for
K=3 classes.
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Basic setting I

Figure 1: Scatter plot of ternary problem (K = 3,N = 100) in the probability
simplex space.
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Basic setting II

 photos.google.com

Google Photos
Home for all your photos and videos,
automatically organized and easy to
share.

https://photos.google.com/search/fox

Figure 2: Example of overcon�dent misprediction (Pabu is a Shiba Inu dog)
and correct sharp prediction (clear image of Beagle).
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Notation I
continued

Considering standard Neural Networks (NNs), the last layer outputs a
vector of real-valued logits z ∈ RK , which in turn are normalized using a
sigmoid/softmax activation function.

Sigmoid Function Softmax Function

σ(z) =
1

1 + exp−z
softmax(z) =

exp(z)∑K
k=1

exp(zk)

For convenience, fk(x) denotes the k-th element of the output vector.

ŷ = argmaxy ′∈Y fy ′(X ) is the top-1 class prediction

p̂ = maxy ′∈Y fy ′(X ) is the associated posterior probability
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Notation II
continued

Some interesting distributions are de�ned:

Din denotes the distribution over X of in-distribution (ID) data

Dout out-of-distribution (OOD) data

Dtest ,X
in

and Dtest ,×
in

represent the distribution of correct and
misclassi�ed ID test samples
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Section 2

Con�dence Estimation
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Con�dence scoring function
From model outputs to probabilities

What is �con�dence"?

a method in mathematical statistics for the construction of a set of
approximate values of the unknown parameters of probability
distributions. Math statistics

raw con�dence score, or uncertainty, is a percentage (0-100%), that
indicates whether the machine is not sure at all, somewhat sure or very
sure about the correctness of a prediction. CF Blog

De�nition (CSF)

Any function whose continuous output aims to separate a model's
failures from correct predictions can be interpreted as a con�dence
scoring function (CSF). [Jaeger et al., 2023]

https://encyclopediaofmath.org/wiki/Confidence_estimation
https://contract.fit/intelligent-automation-and-accuracy/
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Why do we even need to estimate con�dence?

→ ML models are continually improving, yet 0 test error is an illusion*
→ Once a model reaches production, expect deterioration due to i.i.d

assumptions breaking
→ Generative models are prone to hallucinations, requiring some control
mechanism to guide them

https://garymarcus.substack.com/p/how-come-gpt-can-seem-so-brilliant
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CSFs in practice I

MSP and beyond

The most popular CSF is the maximum softmax probability (MSP)
[Hendrycks and Gimpel, 2017], which is the probability of the top-1
prediction (p̂), arising as the largest value from softmax normaliza-
tion of logits from a �nal model layer (head).

• A prediction is translation of a model's output parameters (as a response
to input) to which we apply a standard decision rule, e.g., to obtain the
top-1/r predictions.

• For structured prediction models, inference involves decoding according
to a function maximizing e.g., total likelihood, diversity, ...

For di�erent tasks, architectures or failure sources, CSFs can be
more complex.
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CSFs in practice II

• predictive uncertainty quanti�cation (PUQ) [Ghahramani, 2016, Gal and
Ghahramani, 2016, Lakshminarayanan et al., 2017, Wilson, 2020, Mad-
dox et al., 2019, Van Amersfoort et al., 2020, Gawlikowski et al., 2021,
Mukhoti et al., 2021, Van Landeghem et al., 2022, Mukhoti et al., 2023]

• learning explicit scoring functions (e.g., TrustScore [Jiang et al., 2018],
Deep KNN [Papernot and McDaniel, 2018])

• assessing the similarity of inputs to the training distribution [Liang et al.,
2018, Liu et al., 2020, Rabanser et al., 2019, Bulusu et al., 2020, Wei
et al., 2022]

• covariate shifts, concept drift, novelty detection, adversarial shifts, domain adaptation

• LLM con�dence estimation

• verbalized probability [Lin et al., 2022] for expressing uncertainty
without access to logits

• semantic entropy [Kuhn et al., 2023] for taking into account se-
mantic equivalence

• P(I don't know) [Kadavath et al., 2022]
• prompt chaining

Please give a con�dence between 0 and 1 about how certain you are this is the correct
answer.
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Example outputs for DU task models

Focus: popular DU tasks such as document image classi�cation,
KIE (sequence labeling), DocVQA (discriminative span/generative)

Label Probability

invoice 0.85
receipt 0.1
email 0.05

Hal Jordan was the best Green Lantern ever
PER PER O O O MISC MISC O
1 1 0 0 0 2 2 0
0.05 0.05 0.7 0.8 0.9 0.1 0.25 0.5
0.9 0.8 0.1 0 0.1 0.3 0.35 0.2
0.05 0.15 0.2 0.2 0 0.6 0.4 0.3

HuggingFace NER example

DUDE T5 DocVQA example

https://huggingface.co/kamalkraj/bert-base-cased-ner-conll2003?text=Hal+Jordan+was+the+best+Green+Lantern+ever
https://rrc.cvc.uab.es/?ch=23&com=evaluation&view=method_sample&task=1&m=103160&gtv=10&file=1&eval=1&sample=2
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Con�dence estimation in KIE

• Input: a sequence of tokens x = {x1, x2, ..., xT}, where xt ∈ V maps to
(sub)words in a vocabulary V.

• Labels: a sequence of labels y = {y1, y2, ..., yT}, where yt ∈ Y is a label
from a IOB,IOBES-encoded labelset Y (B-Person, I-Person, ..., O).

• Aggregation strategy in (�rst, average, max) for combining subword
logits into token logits.

# Standard forward pass

outputs = model(**inputs)

# mapping over subwords to token indices

prediction_masks = inputs.word_ids()

# get all unique token indices, skip special start token (None)

words = np.unique([mask if mask is not None else -100 for mask in prediction_masks])[1:]

# for each word spread over multiple subwords, obtain a word confidence

for word in words:
word_idx = (prediction_masks == word).nonzero()[0]

if aggregation_strategy == "average":
word_logits.append(np.nanmean(logits[word_idx], 0))

elif aggregation_strategy == "first":
word_logits.append(logits[word_idx[0]])

elif aggregation_strategy == "max":
word_logits.append(np.nanmax(logits[word_idx], 0))

#TODO: for predicted span (start,end), obtain confidence by summing a range in word_logits
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Con�dence estimation in DocVQA
Comparing extractive (discriminative span prediction) vs. abstractive (generative) 1

Encoder-based models will output logits for all possible start and end
positions of the answer within the provided context. ŷ is the predicted
answer span, where ŷ = (ŷstart , ŷend) and ŷstart ≤ ŷend . The logits at the
�nal layer take the shape of BS × S × S , where BS is the batch size and
S is the sequence length of the context.

Decoder-based models are not restricted to spans and can output an
arbitrary, though often controllable, amount of text tokens, indicated as
S ′. The logits at the �nal layer take the shape of BS × S ′ × V , where V
is the tokenizer's vocabulary size (32.1K for T5-base). Due to
autoregressive decoding, the probability of the token at step t is
dependent on steps [0, t − 1].

1Van Landeghem, Tito, Borchmann, Pietruszka, Józiak, Powalski, Jurkiewicz, Coustaty, Ackaert,
Valveny, Blaschko, Moens, and Stanislawek [2023]
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MSP for extractive QA

# Standard span prediction forward call

outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)

# Assumes masking all padding and special tokens after softmax with 0

start = outputs.start_logits.softmax(dim=1)
.unsqueeze(dim=0).unsqueeze(dim=-1) #1 x BS x S x 1

end = outputs.end_logits.softmax(dim=1)
.unsqueeze(dim=0).unsqueeze(dim=1) #1 x BS x 1 x S

# Compute the probability of each valid (end < start) start, end pair

candidate_matrix = torch.matmul(start, end).triu().detach().numpy() # 1 x BS x S x S

# Obtain highest scoring candidate span by multi-index argmax

flat_probs = candidate_matrix.reshape((1, -1)) # BS x S*S

batch_idx, start_idx, end_idx = np.unravel_index(np.argmax(flat_probs, 1),
candidate_matrix.shape)[1:]↪→

batch_answer_confs = candidate_matrix[0, batch_idx, start_idx, end_idx]



17/ 62

MSP for generative models

# Standard decoder-based greedy forward pass (without labels)

outputs = model.generate(**input_ids, output_scores=True, return_dict_in_generate=True)

# BS x S' x V, dropping EOS token and applying softmax + argmax per token

batch_logits = torch.stack(outputs.scores, dim=1)[:, :-1, :]
decoder_outputs_confs = torch.amax(batch_logits.softmax(-1), 2)

# Remove padding from batching decoder output of variable sizes

decoder_outputs_confs_masked = torch.where(
outputs.sequences[:, 1:-1] > 0,
decoder_outputs_confs,
torch.ones_like(decoder_outputs_confs))

# Multiply probability over tokens

batch_answer_confs = decoder_outputs_confs_masked.prod(1)
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Section 3

Probability Calibration
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The history of calibration
Can we trust the weatherman?

Calibration error = | Forecast* Probability - Relative Frequency of Precipitation|

Source: https://twitter.com/PreetumNakkiran/status/1581841505647415297

https://twitter.com/PreetumNakkiran/status/1581841505647415297
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De�ning calibration

De�nition (Perfect calibration)

[Dawid, 1982, DeGroot and Fienberg, 1983, Zadrozny and Elkan,
2002] Calibration is a property of an empirical predictor f , which
states that on �nite-sample data it converges to a solution where
the con�dence scoring function re�ects the probability ρ of being
correct. Perfect calibration, CE(f ) = 0, is satis�ed i�:

P(Y = Ŷ | f (X ) = ρ) = ρ, ∀ρ ∈ [0, 1] (1)

(!) This de�nition will be worked out in detail later.
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Proper Loss Functions I

The study of calibration originated in the meteorology and statis-
tics literature, primarily in the context of proper loss functions

[Murphy and Winkler, 1970] for evaluating probabilistic forecasts.
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Proper Loss Functions II

Strictly proper loss functions like Brier score (BS) [Brier, 1950]
and negative log likelihood (NLL) [Quinonero-Candela et al., 2005]
calculate instance-level scores

• decompose into a sum of multiple metrics including both ac-
curacy and calibration error [Hernández-Orallo et al., 2012].

LBS(Y , f (X )) =
1

N

N∑
i=1

K∑
k=1

(I (Yi = k)− fk(Xi ))2 (2)

LNLL(Y , f (X )) = − 1

N

N∑
i=1

K∑
k=1

I (Yi = k) · log (fk(Xi )) (3)
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Proper Loss Functions III

Negative Log Likelihood (NLL) [Quinonero-Candela et al., 2005] is both a
popular loss function (cross-entropy) and scoring rule which only penalizes
(wrong) log probabilities qi given to the true class, with I an indicator function
de�ning the true class. This measure more heavily penalizes sharp probabilities,
which are close to the wrong edge or class by over/under-con�dence.

Brier Score [Brier, 1950] is a scoring rule that measures the accuracy of a
probabilistic classi�er and is related to the mean-squared error loss function
(MSE). Brier score is more commonly used in industrial practice, since it is an
`2 metric (score between 0 and 1), yet it penalizes tail probabilities less severely
than NLL.
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On Calibration of `Modern' Neural Networks

• Research into calibration regained popularity after repeated
empirical observations of overcon�dence in Deep Neural
Networks (DNNs) [Nguyen et al., 2015, Guo et al., 2017]

Figure 3: Con�dence histograms and reliability diagrams from [Guo et al., 2017]
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Broad characterization of calibration research

Characterizing calibration research

calibration metrics

CSF evaluation with both theoretical guarantees and practical estimation
methodologies

• Estimators for calibration notions beyond top-1 [Vaicenavicius et al.,
2019, Kull et al., 2019, Nixon et al., 2019, Kumar et al., 2019]

• Theoretical frameworks to generalize over (existing) metrics [Kumar
et al., 2019, Widmann et al., 2019, 2021, Bªasiok et al., 2023b]

• specialize towards a task such as multi-class classi�cation [Vaicenavi-
cius et al., 2019], regression [Kuleshov et al., 2018, Song et al., 2019],
or structured prediction [Kuleshov and Liang, 2015]

• Alternative error estimation procedures, based on histogram regression
[Nobel, 1996, Murphy and Winkler, 1977, Niculescu-Mizil and Caruana,
2005, Naeini et al., 2015, Guo et al., 2017], kernels [Kumar et al., 2018,
Widmann et al., 2019, 2021, Popordanoska et al., 2022] or splines
[Gupta et al., 2020]
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(re)calibration methods

Improve calibration by adapting CSF or inducing calibration during training of f

• learn a post-hoc forecaster F : f (X ) → [0, 1] on top of f (overview: Ma and
Blaschko [2021])

• modifying training procedure with regularization (overview: [Liu et al., 2021,
Popordanoska et al., 2022])

+ PUQ methods (e.g., Deep Ensemble [Ovadia et al., 2019])
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Notions of calibration

Three standard notions of calibration, di�ering in the subset of
predictions considered over ∆Y [Vaicenavicius et al., 2019]

• top-1 [Guo et al., 2017]

• top-r [Gupta et al., 2020]

• canonical calibration [Bröcker, 2009]
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Expected Calibration Error

De�nition (`p Calibration Error)

[Kumar et al., 2019, Vaicenavicius et al., 2019]
The `p calibration error of f : X → ∆Y over the joint distribution
(X × Y ) with the norm p ∈ [1,∞) is given by:

CEp(f )p = E(X ,Y )

[
‖E[Y | f (X )]− f (X )‖pp

]
(4)

• Popular ECE metric [Naeini et al., 2015] is a special case with p = 1

• p =∞ de�nes the worst-case risk version known as MaxCE.
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Relaxations
Toward statistically feasible estimation

Formally, a classi�er f is said to be canonically calibrated i�,

P(Y = yk | f (X ) = ρ) = ρk ∀k ∈ [K ]∧∀ρ ∈ [0, 1]K where K = |Y|.
(5)

However, the most strict notion of calibration becomes infeasible to compute
once the output space cardinality exceeds a certain size [Gupta and Ramdas,
2021].

For discrete target spaces with a large number of classes, there is plenty interest
in knowing that a model is calibrated on less likely predictions as well.

Relaxations:

I. top-label [Gupta and Ramdas, 2022] (highly recommended)

II. within-top-r [Gupta et al., 2020]

III. marginal [Kull et al., 2019, Nixon et al., 2019, Kumar et al.,
2019, Widmann et al., 2019]
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Running example

f (xi ) f (xii ) f (xiii ) f (xiv ) f (xv ) f (xvi )

f1(·) 0.1 0.6 0.2 0.0 0.0 0.9

f2(·) 0.0 0.0 0.7 0.1 0.1 0.1

f3(·) 0.6 0.1 0.0 0.1 0.8 0.0

f4(·) 0.3 0.3 0.1 0.8 0.1 0.0

p̂ 0.6 0.6 0.7 0.8 0.8 0.9

ŷ 3 1 2 4 3 1

y 3 4 2 1 4 1

Table 1: Predictions of a �xed model f : X → ∆3 (K = 4) on calibration/test
data D = {(i , 3), (ii , 4), . . . , (vi , 1)} (N = 6)

How to go from this to statistical estimates of calibration error?

Let's do it together: Link

https://githubtocolab.com/Jordy-VL/calibration-primer/blob/main/src/intuition_calibration.ipynb
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Dissecting CE for estimation I

Tractable and practical estimation of any `p calibration error requires measuring
discrepancy between E(Y | f (X )) and f (X )
→ estimate conditional expectation for a discrete random variable Y
conditioned on a continuous random variable f (X )
!→ not trivially reduced to comparing distances between real-valued vectors

De�nition

Binning scales down f to output the average value in each bin Bj :

fB(X ) = E [f (X ) | f (X ) ∈ Bj ] (6)

A binning scheme B discretizes a continuous random variable P̂ ∈ [0, 1] into a

set of intervals B such as B = {[0, 1
|B| ], [ 1

|B| ,
2
|B| ], ..., [ |B|−1|B| , 1]} in the case of

an equal-range binning scheme.

The choice of binning can drastically impact the shape of the reliability diagram and
alter the estimated calibration error.
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Binning Estimator of ECE

Plenty of histogram-based ECE estimator implementations can be
found online, yet many design parameters are not exposed:

I. Adapting number of bins (not the default |B| = 15)

II. Di�erent binning scheme (equal-range, equal-mass)

III. Binning range to de�ne operating zone

IV. Proxy used as bin accuracy (lower-edge, center, upper-edge)

V. `p norm

→ https://huggingface.co/spaces/jordyvl/ece

[Van Landeghem et al., 2023] introduced this generic implementation to the ICDAR 2023
Document UnderstanDing of Everything competition.

https://huggingface.co/spaces/jordyvl/ece
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Understanding temperature scaling and its e�ect on the metrics of
interest I

Original f2: T=0.8 f3: T=[0,0.8] f4: T=2 f5: T=[1,2]

accuracy (↑) 0.500000 0.500000 0.500000 0.500000 0.500000
F1_macro (↑) 0.541667 0.541667 0.541667 0.541667 0.541667
BS(↓) 0.733333 0.701493 0.712969 0.868646 0.855173
NLL(↓) 6.503033 4.431991 3.227383 6.785734 6.789682
ECE(|B| = 10, eqr) (↓) 0.300000 0.366667 0.283333 0.433333 0.433333
ECE(|B| = 10, eqm) (↓) 0.400000 0.374696 0.408064 0.470121 0.516319
AURC* (↓) 0.483333 0.419444 0.330556 0.483333 0.586111
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Understanding temperature scaling and its e�ect on the metrics of
interest II

Figure 4: Tempering the probability of the original examples.
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ECEANLS

Designing a calibration metric for continuous scores.

• As part of [Van Landeghem et al., 2023], we contributed a
novel empirical estimator of top-1 calibration for the task of
visual question answering, evaluated using average normalized
Levenshtein distance (ANLS).

Thresholding for Continuous Scores

Prior work [Munir et al., 2022] introduced the strategy of thresh-
olding continuous quality scores (in the case of IoU larger than τ)
in order to be able to estimate ECE.
→ In our setting, the exact accuracy condition I[Y = ŷ ] is replaced
by I[ANLS(y , ŷ) > τ ].
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Open problems in calibration

� Calibration metrics/methods adapted to speci�c tasks

* Named entity recognition [Kong et al., 2020]
* Object detection and segmentation [Pan et al., 2021, Dave

et al., 2021, Küppers et al., 2022]

� Calibration metrics/methods adapted to speci�c output spaces

* My attempt for sequence-structured output spaces
(loss-weighted sampling / subgraph decomposition
approximation)

� E�cient estimation of �stronger" calibration notions

* A consistent and di�erentiable `p canonical calibration error
estimator[Popordanoska et al., 2022]

� Understanding the link between non-convex optimization and
calibration

* Are �at minima required for calibration? [Zhu et al., 2022]
* When does optimizing a Proper Loss Yield Calibration?

[Bªasiok et al., 2023a]
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Section 4

Failure Prediction
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Re�ecting on ML evaluation practices

Both in academia and industry, benchmarks are pushing us to
achieve higher predictive performance as measured by accuracy,
BLEU, ROUGE, mAP, ANLS, ...

I. What if the opportunity resides in better modeling of CSFs, rather than
chasing the next minimal goal post of ·% smaller test error?

II. Are we even (correctly) characterizing the errors? [Larson et al., 2023]

III. What (% of) errors can be tolerated in practice? [Flach, 2016]

Follow-up: are novel advances (pre-training, scaling, architectures) bene�cial
or hurting the detection of iid mispredictions? [Galil et al., 2023]
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Con�dence Ranking

I. more sensible and practically useful notion to consider
probabilistic predictions vs. calibration

II. Explicit assessment of i.i.d. failure detection performance is
desired for safe deployment

III. Relation to intelligent automation - IDP and FTE savings
(business metrics)

Evaluation Metrics:

AUROC (Area Under the ROC Curve)

AURC (Area Under the Risk Coverage Curve) [Geifman and El-Yaniv, 2017,
Jaeger et al., 2023]

E−AURC (discounting accuracy and normalization) [Geifman et al., 2018]
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AUROC

I. AUROC is a threshold-independent measure of the quality of a
binary classi�er.

II. plots the correct-reject (TN/N) vs. correct-accept (TP/P) ratio for
all possible thresholds

III. Lies in the unit square with random choice corresponding to the
diagonal, perfect discrimination corresponding to the edges.

AUROCf [Hendrycks and Gimpel, 2017] for OOD-detection
∼ the probability that a + example (ID) is assigned a higher detection
score than a − example (OOD).

• AUROC is not sensitive to the magnitude of the scores, only to their ordering.

• AUROC is not sensitive to any class imbalance.

• AUROC is not a measure of the performance of the classi�er.
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AURC

Area-Under-Risk-Coverage-Curve (AURC) [Geifman and El-Yaniv,
2017, Jaeger et al., 2023] measures the possible trade-o�s between
coverage (proportion % of Dtest) and risk (error % under given
coverage).
Assumptions:

• predictions come with a CSF estimate

• curve is obtained by sorting all CSF estimates and evaluating
risk from high to low, together with their respective correctness

→ AURC for evaluating highly-accurate settings (e.g., 95%
accuracy) with risk control
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Applied metrics on classic DU task

layoutlmv3_rvlcdip

accuracy 0.927373
F1_macro 0.927225
BS 0.109506
NLL 1.147134
ECE(|B| = 100, eqm) 0.026559
AURC 0.009194

Table 2: LayoutLMv3-base [Huang et al., 2022] on test set of RVL-CDIP
[Harley et al., 2015]

More examples from Beyond Document Page Classi�cation (under review) Link

https://githubtocolab.com/Jordy-VL/calibration-primer/blob/main/src/intuition_calibration.ipynb


43/ 62

Choosing the right metric for the job

-

Figure 5: Evaluation metrics for failure prediction [Jaeger et al., 2023].

Why not just use (strictly) proper loss functions? → exclusively operate on the

predicted class scores and are not compatible with arbitrary CSFs
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Does calibration imply good failure prediction?

Not necessarily: [Zhu et al., 2022]

Figure 6: Following [Jaeger et al., 2023], this �gure sketches the independent
requirements of calibration and con�dence ranking.

Veri�ed on CIFAR-10 - Resnet18 example, before and after temperature scaling
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Open Problems

� Benchmarking beyond vision architectures (with the same
methodological quality as [Galil et al., 2023])

� Extending failure prediction methodology to multi-task settings

� Understanding the link between feature space disentanglement
and CSF ranking [Zhu et al., 2023]

� Investigating the relationship between stronger notions of
calibration and failure prediction

� Sample-e�cient failure prediction and exploring the connection
to semi-supervised learning [Feng et al., 2023]
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Additional resources

• Implementations at:

https://github.com/Jordy-VL/calibration-primer

https://github.com/Jordy-VL/DUDEeval

https://huggingface.co/spaces/jordyvl/ece

• Great tutorial ECML 2020 classi�er calibration and follow-up [Silva Filho
et al., 2023]

• Literature overview:

Awesome-Failure-Detection

• Slides available at
https://jordy-vl.github.io/assets/230630_CVC-Seminar-JVL.pdf

https://github.com/Jordy-VL/calibration-primer
https://github.com/Jordy-VL/DUDEeval
https://huggingface.co/spaces/jordyvl/ece
https://classifier-calibration.github.io/
https://github.com/Impression2805/Awesome-Failure-Detection
https://jordy-vl.github.io/assets/230630_CVC-Seminar-JVL.pdf
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Section 5

Intermediate Conclusions
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Important takeaways

→ Lower test error is not all that matters

→ More �ne-grained analysis of calibration and failure sources is important

→ The top-1 (weak, yet popular and e�cient to estimate) notion of
calibration does not guarantee optimal failure prediction

→ While calibration literature is heavy-to-digest with a high barrier to entry,
understanding of the basics already allows access to the low-hanging fruit

→ Collaborations can help bridge the gap between theory and practice



• Van Landeghem, J., Borchmann, L., Tito, R., Pietruszka, M., Jurkiewicz, D., Powalski, R., Józiak, 

P., Biswas, S., Coustaty, M., Stanisławek, T. (2023). ICDAR 

2023 Competition on Document UnderstanDing of Everything (DUDE). 

In Proceedings of ICDAR 2023.

• Van Landeghem, J., Tito, R., ..., Anckaert, B., Valveny, E., Blaschko, M, Moens, M. F, 

& Stanisławek, T. (2023). Document Understanding Dataset and Evaluation 

(DUDE). arXiv preprint arXiv:2305.08455. (under review)

• Van Landeghem, J., Biswas, S., (2023). Beyond Document Page Classification. In ACIIDS 2023 

(under review).

15

Selected collabs

Ongoing explorations:
• Knowledge Distillation for Document Foundation Models

• A Multi-Modal Multi-Exit Architecture for Efficient Document Classification
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DUDE
Building a long-standing document understanding benchmark
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DUDE 

• Foster research on generic document understanding (DU)

• Sourced 5K opensource documents from archive, wikimedia, documentcloud

• multi-domain (+15 industries)

• multi-type (+- 200 document types)

• multi-page (µ=5 pages)

• multi-QA (extractive, abstractive, list, non-answerable)

• Bridge QA & DLA:

• Particular layout semantics (stamp, signature, font style, checkbox)

• Complex layout-navigating questions demanding multi-step reasoning



Faculty of Engineering Science, Department of Computer Science, HCI unit, LIIR lab18

DUDE    Competition

@ICDAR 2023

Website:

https://rrc.cvc.uab.es/?ch=23

Document UnderstanDing of Everything

https://rrc.cvc.uab.es/?ch=23
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DUDE    

ICCV 2023, under review

Document Understanding Evaluation and Dataset

I) strong performance of LLMs

II) Even stronger performance 

by models 

+layout understanding 

++longer sequence length
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DUDE    Document Understanding Evaluation and Dataset

Diagnostic categories with

• visual evidence

• reasoning operations

Models lagging far behind 
human baseline
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Beyond Document Page Classification
A reality check toward efficient multi-page document 

representations



Faculty of Engineering Science, Department of Computer Science, HCI unit, LIIR lab22

Beyond Document Page Classification (DocPClf)

• Position paper with following main points:

I. Benchmark closer to applied document classification scenarios

II. Experimental study on multi-page inference methods

III. Reflect on evaluation practices & moving beyond iid test sets

Links to related calls from CVC collaborators (deepdoc2022, scaledoc2023)

ACIIDS 2023, 

under review
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I. Document classification scenarios
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II. Multi-page inference experiments

Hypothesis: Summary-detail document construction

Inefficient (L pages) and dependent on calibration
cf. Table 4 in DUDE ICCV submission (Concat vs. Max Conf.)

Multi-page document representations are promising for 

improving document classification
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III. Evaluation beyond accuracy and iid settings

Covariate shifts
Subclass shift

Concept drift
Near OOD



• All of the above on the introduced DUDE dataset

• Improving CSF estimation for DocVQA

• Benchmarking re-calibration methods, calibrated losses and failure prediction

• Multi-task calibration:

• Hypothesis: joint training with multiple heads will improve joint calibration

• No opensource dataset with KIE and classification annotations

• Efficient document understanding by e.g., adaptive inference, model compression

• The effect of knowledge distillation from/on calibration and failure prediction

Faculty of Engineering Science, Department of Computer Science, HCI unit, LIIR lab26

Interesting things to further explore
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Efficient Multi-Page Document Classification
• How would we (naively) scale current architectures to multi-page documents 

and where are the current bottlenecks? (e.g., LayoutLMv3)
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Questions?
+ how to contact me:

jordy-vl.github.io/

https://jordy-vl.github.io/
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