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The        in the room: documents pervade our daily lives

Instant gratification monkey –

Tim Urban



Document-based communication 

facilitates crucial interactions, decisions 

and actions

Manual processing is inefficient

Technology assistance?
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Humans and organizations are drowning

under visually-rich documents…



Two primary challenges: 

I. Complexity of processing, long multimodal 
documents algorithmically

II. Need for reliability, robustness and control 
over associated risks
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…yet organizations lag in 
adopting automated document 
processing solutions

Document Understanding (DU)

Intelligent Automation (IA)
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Document Understanding: the E2E process
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• document number: 29069

• document date: 12/21/2020 

Key Information ExtractionOptical Character Recognition Document ClassificationDocument Layout Analysis /

Document Object Detection

logo: 136,313; 313,432

handwriting: 
(493,2133; 2063,2523)

document number: 29069

document date:12/21/2020

…

document type: invoice
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Document Understanding: the research field

Computer

Vision

Machine

Learning

Natural

Language

Processing

DU

Recent advances      Large Language Models (LLM)

Deal with any subtasks and all complexities of documents

- Multimodal

- Multipage

- Channel

- Quality

- …
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What is a (Large) Language Model?

Slide adapted from link

The best thing about AI is its ability to learn

The best thing about AI is its ability to learn from

The best thing about AI is its ability to learn from experience …

learn 4.5%

predict 3.8%

make 3.2%

understand 3.1%

do 2.8%

The best thing about AI is its ability to 

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
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How ChatGPT and LLMs are developed

Training stages

1. Pretraining

2. Alignment

3. Instruction tuning / prompt engineering

Main architecture

A BD C> > >

man's best friend is a <MASK>
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What is a (Large) Vision-Language Model? 

Text

Encoder

Image

Encoder

Similarity
A child wearing an 

AC Milan 1999 shirt  

sitting at a desktop 

computer
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The success of ChatGPT and generative AI



1. Training: new skills

2. Evaluation: track progress
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What is fueling the GenAI boom?

The role of data > algorithmic improvements
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From boom to A(G)I doom OR Intelligent Automation



13

What makes automation intelligent?

Intelligent Automation (IA) = AI + RPA + BPM

• Mimic human capabilities required to perform knowledge work

• Capable of solving major world problems when combined with people 

& organizations

Goal: Taking the robot out of the human, not replacing human workers

Pascal Bornet, Ian Barkin and Jochen Wirtz (2020)

build straight-through business processes, which 

are more efficient (productivity, processing speed, 

cost) and often more effective (quality and logic).

Confidence scoring

Failure prediction

Advanced evaluation

Requirements

https://intelligentautomationbook.com/
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How is the technology being evaluated?

Accuracy-focus

Domain-specific

Public holdout set

Automation-focus

Multi-domain

Private holdout set

Automation-focus

Real-world usage, >i.i.d.

Human evaluation, Blind A/B testing



Reliable and Robust Deep Learning
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Overview of this presentation

Realistic and Efficient Document Understanding

Conclusions and Takeaway Messages



Predictive 
Uncertainty for 

Probabilistic Novelty 
Detection in Text 

Classification
ICML 2020

Benchmarking
Scalable Predictive

Uncertainty in
Text Classification
IEEE Access 2022

Beyond Document
Page Classification: 

Design, Datasets, 
and Challenges
WACV 2024 oral

Competition on
Document

UnderstanDing of
Everything

ICDAR 2023 oral

Document 
Understanding 

Dataset and 
Evaluation
ICCV 2023

Knowledge 
Distillation for 
Visually-Rich 

Document 
Applications
ICDAR 2024
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Overview: publications and innovation scope
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I. Reliable and Robust

Deep Learning

17
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The foundations of Deep Learning

“Neurons that together, together”

𝑦 = 𝑤𝑥 + 𝑏
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Deterministic NNs output unreliable uncertainty

Alternative 

confidence 

scoring 

functions?
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Bayesian Deep Learning

→ Modern DNNs are underspecified by 

the data, capable of representing 

many compelling parameterized 

solutions

→ Investigate parameter uncertainty vs. 

deterministic NNs 

Predictive Uncertainty Quantification:
Disentangle sources of uncertainty
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What does uncertainty mean for language tasks?

Knowledge gaps:

• Missing evaluation of PUQ in NLP

o Applicability and scalability?

• Architecture, prior and hyperparameter 

influences on uncertainty quality
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ID

OOD

Automated

Manual review

Decision-making under 

Predictive Uncertainty

Repair invoice

Wrong triage

Correct triage

Automated

Covariate shift Subclass shiftConcept drift
Far OODNear OOD

Hardware invoice Car invoice

Distribution shift is an unavoidable failure source

model
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Hallucination, control and the evaluation problem

A little girl in standing next to a shiba inu next to a pond, 
the girl is holding a lucky clover in her left hand, the dog 
sits next to her, black and white
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Hallucinations in generative modelling emphasizes 

the need for uncertainty quantification

Non-Answerable Question: In what year does the Net 

Requirement exceed 25,000? 

ChatGPT: 2016/2017/2018/…



Contributions: Reliable and Robust

• BDL survey and literature review

• PUQ methods NLP benchmark

• Novel hybrid PUQ methods

• Real-world evaluation setups

• Take-home guidelines for PUQ

Predictive Uncertainty for Probabilistic 

Novelty Detection in Text Classification

ICML UDL 2020

Benchmarking Scalable Predictive 

Uncertainty in Text Classification

IEEE Access 2022

25 25



✓6 text classification datasets

✓2 neural network architectures

✓6 unique, 28 total uncertainty methods

✓5 uncertainty measures

✓3 experiment setups

✓5 random seeds

✓4 hyperparameter ablations
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Presenting the first, comprehensive benchmark for 

scalable PUQ in NLP 
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Proposing novel, hybrid PUQ methods from 

complementarity in function space

Credit: Bryan Van Hauwaert

Source: https://losslandscape.com/explorer

Deep Ensemble (Lakshminarayanan 2017)Variational Inference (MC Dropout (Gal 2016))

https://losslandscape.com/explorer


28

Finding 1: Proposed hybrid method is superior, at 

higher efficiency

MC Concrete Dropout Ensemble:

• Presented empirical evidence for theory of complementarity 
in function space

• Superior at novel class robustness and out-of-domain 
detection, even at a lower ensemble size 
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Randomly set a % p of neurons/weights to 0

Gal and Ghahramani 2016; Lakshminarayanan 2017; Gal 2017 

Decomposing Monte Carlo Concrete Dropout Ensemble



MC dropout: low uncertainty
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MC dropout: max data uncertainty
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MC dropout: max model uncertainty
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Finding 2: BERT underperforms in 
novel class detection 

TextCNN (6M params) BERTbase (110M params)
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II. Realistic

and Efficient

Document Understanding

34
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Shifting the focus to Document Understanding
F
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Document Understanding

• Datasets lacking variety, scale and 

multipage documents

• Current benchmarks evaluation 

does not transfer downstream

Document data unavailability

• Text-only LLMs for any document task?

• Foundation models more powerful, yet 

also more cumbersome

Pretrain-finetune | Foundation models

• More generally applicable, embrace real-world complexity

• More efficient at modeling the multimodality of documents

• Evaluation more in sync with downstream requirements

Objectives



Modality-centric

Single domain

Single task

Extractive QA

Single page

Specific OCR

Accuracy-focused

…

Multimodal

Multidomain

Multitask

Multi QA

Multipage

Multi OCR

Multi metric

…

P
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O
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E
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C
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R
R

E
N

T
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What are DU benchmarks missing?

How documents naturally appear in processing workflows

How humans naturally interact with documents

Design criteria:



Contributions: Realistic

Document Understanding Dataset and 

Evaluation

ICCV 2023

Competition on Document 

UnderstanDing of Everything (DUDE)

ICDAR 2023 *oral

• Formalization of multi-page DC

• Construction of two novel datasets

• Survey and recommendations:
• Complete DC methodology

• Dataset construction efforts

Beyond Document Page Classification: 

Design, Datasets, and Challenges

WACV 2024 *oral

37

• Design of multi-faceted dataset

• Comprehensive evaluation of SOTA

• Baseline and competition results

• Calibrated, selective generation

37



Document classification is more complex than reported

38



A multi-faceted benchmark for generic DU challenges 

the state-of-the-art

39

Document UnderstanDing of Everything
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-Everything-, you mean?
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Meet the DUDEs
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Our Baselines vs. Competition

i. Generative = must

ii. LLMs are performant

iii. Outperformed by models 

+layout understanding 

++longer sequence length

SOTA ANLS <= 50%!
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Diagnostic categories shed more light on what models 

have most difficulty with 

Diagnostic categories with

• visual evidence

• reasoning operations

Baselines lagging far behind 

human baseline
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Contributions: Efficient

• KD benchmark on VDU tasks

• Novel downstream evaluation

• Enrich LLMs with semantic layout

DistilDoc: Knowledge Distillation for 

Visually-Rich Document Applications

ICDAR 2024

44
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Knowledge distillation facilitates small, specialized 

task modules that enrich downstream representations 



1. Best KD method
• SimKD > vanilla KD, on par with teacher, + under covariate shift

2. Teacher-Student capacity gap
• ViT-Tiny SimKD →16x smaller model retains 90% rel. accuracy

3. Impact of Pretraining on KD
• ViT2ViT > DiT2ViT, - under covariate shift

4. Architecture influence
• Random initialization & DLA-KD: CNN > ViT

5. Applicability for downstream tasks
• DLA-enriched spacing prompting contributes positively to DocVQA

46

DistilDoc streamlines research on compression 

tailored to VDU tasks
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Conclusions

47



My dissertation addresses gaps, proposes methodologies opening new opportunities:

1. Limited research on scalable uncertainty quantification in NLP

✓ Comprehensive survey and benchmark 

✓ Design of hybrid PUQ methods, offering better robustness and scalability

2. Disconnect DU research and applications

✓ Complete redefinition of document classification and methodology

3. Unpredictable performance of SOTA for generic DU

✓ Multi-faceted benchmark and competition incorporating all document modalities

✓ Promote the layout modality and how to obtain it efficiently

Conclusions

48
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Takeaway messages

1. Evaluate AI capability, without forgetting about reliability and robustness

2. Need increasingly complex real-world benchmarks to track DU progress

3. Moving the goalpost to complete documents will drive efficiency research

4. A long way to understanding: multimodality, compositionality and memory

49



50A striking, ultra-realistic poster featuring a heartfelt "Thank You" message spelled out in a modern, bold font. The background is a visual representation of a million business 

documents, with different colors, patterns, and textures, creating a dynamic and visually rich atmosphere., poster @



Q&A

51

APP: ask my thesis

huggingface.co/spaces/

jordyvl/ask_my_thesis
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