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Humans and organizations are drowning
under visually-rich documents...
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Document-based communication
facilitates crucial interactions, decisions
and actions

Manual processing is inefficient

Technology assistance?
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...yet organizations lag in
adopting automated document
processing solutions

Two primary challenges:

|.  Complexity of processing, long multimodal
documents algorithmically

» Document Understanding (DU)

lI. Need for reliability, robustness and control
over associated risks

» Intelligent Automation (1A)




Document Understanding: the E2E process

Optical Character Recognition

Document Layout Analysis /

Document Object Detection
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Document Understanding: the research field

Deal with any subtasks and all complexities of documents
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What is a (Large) Language Model?

learn 4.5%

predict 3.8%

The best thing about Al is its ability to make 3.2%
understand 3.1%

do 2.8%

The best thing about Al is its ability to learn
The best thing about Al is its ability to learn from
The best thing about Al is its ability to learn from experience ...

Slide adapted from link


https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

How ChatGPT and LLMs are developed

Main architecture

Qutput
Probabilities

Linear

Add & Norm
Feed
Forward
| Add & Norm IT:
(e Multi-Head
Feed Attention
Forward Nx
S =l
N Add & Norm
~>{ Add & Norm ] Vasked
Multi-Head Multi-Head
Attention Attention
L At
\———] J —)
Paositional o) @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Training stages

1. Pretraining man's best friend is a FRNESLS
2. Alignment ®>0>(>@®

Instruction tuning / prompt engineering

Prompt
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You are asked to answer questions asked on a document image.

The answers to questions are short text spans taken verbatim from the document.

This means that the answers comprize a set of contiguous text tokens present in the document.
Document:

{Layout Aware Document placeholder}

Question: {Question placeholder }

Directly extract the answer to the question from the document with as few words as possible.

Answer: ||

S



What is a (Large) Vision-Language Model?

A child wearing an o
AC Milan 1999 shirt 4| Similarity
sitting at a desktop Encoder |

computer




The success of ChatGPT and generative Al

@ CchatGPT

------- R



What Is fueling the GenAl boom?

Arfificial | Machine Deep
Intelligence Learning Learning

@

Ability to learn Learning based on

Engineering of
making Intelligent
Machines and Programs

without being explicitly Deep Neural
programmed Network

1950°'s 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017's

The role of data > algorithmic improvements
1. Training: new sKills

2. Evaluation: track progress




From boom to A(G)l doom OR Intelligent Automation

| SHALL DEFEAT YOU, EVIL
DRACON, AND STEAL YOUR

HOARD OF WEALTH!

FINALLY, THE BEAST IS SLAIN, WHAT, WHAT THE HELL IS THIS?
THE COLD SHALL BE MINE! WHERE 15 THE TREASURE HOARD?,
THAT'S A THRESHER, IT SEPARATES THE
WHEAT FROM THE CHAFF AUTOMATICALLY
WITHOUT MUCH MANUAL LABOR.

YU SEE, EVEN WITH ALL THE COLD IN | ALSO HAVE AN AUTOMATED COTTON
T{: m"}: g'w"‘g T%Sﬁmr THE WORLD, YOU CAN'T PRODUCE MORE. LOOM, IF YOU ARE INTERESTED.
PRODUCTIVE CAPACITY. ALLIT WILL b0 15 CAUSE COLD TO BE fI | THis SUCKS. | CANT CO
LESS VALUABLE. WHAT YOU NEED ARE BACK TO THE PRINCESS
MACHINES TO FREE UP LABOR SO YOU S | \iTH THIS NERD SHIT. (0D,
CAN CREATE MORE WITH LESS. DAMN NERD DRAGON.




What makes automation intelligent?

Intelligent Automation (IA) = Al + RPA + BPM

« Mimic human capabilities required to perform knowledge work

« Capable of solving major world problems when combined with people
& organizations

Goal: Taking the robot out of the human, not replacing human workers

Requirements
Confidence scoring build straight-through business processes, which

Failure prediction are more efficient (productivity, processing speed,
Advanced evaluation cost) and often more effective (quality and logic).

“This insightful and practical guidebook is instrumental for success
in the Fourth Industrial Revolution L WA
d Chairrr e W t Fort

Welcome to the World of HYPERAUTOMATION

Learn How to Harness Artificial Intelligence to
Boost Business & Make Our World More Human

PASCAL BORNET
IAN BARKIN JOCHEN WIRTZ

Pascal Bornet, lan Barkin and Jochen Wirtz (2020)



https://intelligentautomationbook.com/

How Is the technology being evaluated?

4 27 CIRYE 20 B2

Accuracy-focus Automation-focus Automation-focus
Domain-specific Multi-domain Real-world usage, >i.i.d.
Public holdout set Private holdout set Human evaluation, Blind A/B testing



Overview of this presentation
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% é‘g and Robust Deep Learning
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D} Conclusions and Takeaway Messages
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Predictive
Uncertainty for

Probabilistic Novelty

Detection in Text
Classification
ICML 2020

Benchmarking
Scalable Predictive
Uncertainty in
Text Classification
IEEE Access 2022

Beyond Document

Page Classification:

Design, Datasets,
and Challenges
WACV 2024 oral

Competition on
Document
UnderstanDing of
Everything
ICDAR 2023 oral

Document
Understanding
Dataset and
Evaluation
ICCV 2023

Overview: publications and innovation scope

Knowledge
Distillation for
Visually-Rich

Document
Applications

ICDAR 2024




Reliability Diagram
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Conditional Expectation
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The foundations of Deep Learning
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Deterministic NNs output unreliable uncertainty

o(2); = Ejf:l o fox
2 e cat
e dog ¥ Alternative
& o fox , ' confidence
‘ - scoring
functions?
O
()
o O
o
le) O
(@]
& @]
® g7
o‘ o)
cat




s

Bayesian Deep Learning

Standard neural network Bayesian neural network
- Modern DNNSs are underspecified by O O
the data, capable of representing Input layer ~

many compelling parameterized

0.5
solutions Hidden layer
04 0
0.25 :
—> Investigate parameter uncertainty vs.

deterministic NNs

HO 0000
0.1 /]

High Epistemic |

[ Uncertainty
i No/Limited Data : -
0.5: | Low Aleatoric ( ) tHigh Aleatoric;
- - PTG © | Uncertainty il Ll
Predictive Uncertainty Quantification: 00- | | i :
Disentangle sources of uncertainty os 5
::. 2 &y ’o :g" :n
-1.0 i — Ground truth » -W
X s Training data = - Al
_15 L. i, ' 1 (] . 1 R ! 1
0 2 4 6 8 10 12
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What does uncertainty mean for language tasks?

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann):

Knowledge gaps:

« Missing evaluation of PUQ in NLP
o Applicability and scalability?
» Architecture, prior and hyperparameter
influences on uncertainty quality




Distribution shift is an unavoidable failure source

Decision-making under
Predictive Uncertainty

Automated

Repair invoice Hardware invoice Car invoice

Manual review

Wrong triage

Covariate shift ~ Concept drift Subclass shift Correct triage

Near OOD Far OOD

Automated
22
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Hallucination, control and the evaluation problem

tely

10 november 2022

A little girl in standing next to a l‘shib‘a inu héxt to'a pond,
he girl is holding a lucky clover in her left hand, the dog
sits next to her, black and white m @
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Hallucinations in generative modelling emphasizes °
the need for uncertainty quantification

uirement

Non-Answerable Question: In what year does the Net
Requirement exceed 25,0007?

ChatGPT: 2016/2017/2018/...

~®@




Contributions: Reliable and Robust

s :

Predictive Uncertainty for Probabilistic
Novelty Detection in Text Classification

Benchmarking Scalable Predictive
Uncertainty in Text Classification




Presenting the first, comprehensive benchmark for &

scalable PUQ in NLP

v'6 text classification datasets

v'2 neural network architectures

v'6 unique, 28 total uncertainty methods
v'5 uncertainty measures

v'3 experiment setups

v'5 random seeds

v'4 hyperparameter ablations

4d4RRP * * ) 4%P
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MC Dropout

MC Heteroscedastic

MC Concrete Dropout

MC Heteroscedastic Concrete Dropout

Deep Ensemble

Deep Ensemble Regularized

MC Ensemble

Concrete Dropout Ensemble

MC Concrete Dropout Ensemble
Heteroscedastic Ensemble

MC Heteroscedastic Ensemble
Heteroscedastic Concrete Dropout Ensemble
MC Heteroscedastic Concrete Dropout Ensemble

SNGP

Regularized SNGP

MC Dropout SNGP
Concrete Dropout SNGP

MC Concrete Dropout SNGP



Proposing novel, hybrid PUQ methods from
complementarity in function space o

Credit: Bryan Van Hauwaert
Source: https://losslandscape.com/explorer e {;:? """"""""" @



https://losslandscape.com/explorer

0.70

0.68

AUROC
o
=z
@

0.64

0.62

Finding 1: Proposed hybrid method is superior, at
higher efficiency

In function space

MC Concrete Dropout Ensemble:

» Presented empirical evidence for theory of complementarity

« Superior at novel class robustness and out-of-dom
detection, even at a lower ensemble size

e

b
MC Concrete Dropout Ensemble £

Heteroscedastic Ensemble

Concrete Dropout Ensemble

Deep Ensemble

MC Heteroscedastic Ensemble

MC Heteroscedastic Concrete Dropout Ei
Heteroscedastic Concrete Dropout Enser
Regularized

Concrete Dropout

MC Heteroscedastic Concrete Dropout
MC Concrete Dropout

Heteroscedastic

Heteroscedastic Concrete Dropout

MC Ensemble

MC Heteroscedastic

Unregularized

MC Dropout

MC Heteroscedastic Concrete Dropout Ensemble —

Heteroscedastic Concrete Dropout Ensemble

0.15

0.00

epistemics\R

-0.05

= w

cD AUROC (p-value = 8.40e-21, #D = 12)

| e

QP
Ea MC Concrete Dropout Ensemble —

MC Concrete Dropout ——

MC Heteroscedastic Concrete Dropout

Concrete Dropout Ensemble —

Deep Ensemble

Heteroscedastic Concrete Dropout
Regularized

MC Dropout

Heteroscedastic

L MC Heteroscedastic

Deep Ensemble Regularized

MC Ensemble

MC Heteroscedastic Ensemble

Heteroscedastic Ensemble

Concrete Dropout

Unregularized



Decomposing Monte Carlo Concrete Dropout Ensemble

Randomly set a % p of neurons/weights to 0

Algorithm 1: MCdropout
Input: data z*, encoder g¢(-), prediction network h(-),
dropout probability p, number of iterations B
Output: prediction 7;,,., uncertainty 7;
:forb=1to B do
€lp) VariationalDropout(g(z*), p)
Z(p) < Concatenate (e, , extFeatures)
() < Dropout (h(z), p)
: end l)or

n s U

// prediction
6 e B Lot By)

// model uncertainty and misspecification
7: 77% = % 211;1(?3&) g 17*)2
8: return 9., M

(b) After applving dropout.

(a) Standard Neural Net

Gal and Ghahramani 2016; Lakshminarayanan 2017; Gal 2017  ‘owmmmwmmmmeme W """"""""



MC dropout: low uncertainty b
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MC dropout: max data uncertainty

sssssssssssss

Confidence

=
o

o
o
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N

o
o

Class 1 Class 2 Class 3



MC dropout: max model uncertainty

=
o

Sample  fes 0.8
1 §0.4
0.2 0.6

Confidence
=
N

|
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Class 1 Class 2
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Finding 2: BERT underperforms in

novel class detection

Reuters

TextCNN
Architecture

BERT

TextCNN (6M params)

BERT, .. (110M param

s)
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Shifting the focus to Document Understanding

Datasets lacking variety, scale and
multipage documents

Current benchmarks evaluation
does not transfer downstream

Focus of the field

» Text-only LLMs for any document task?
» Foundation models more powerful, yet
also more cumbersome

More generally applicable, embrace real-world complexity
More efficient at modeling the multimodality of documents
Evaluation more in sync with downstream requirements




What are DU benchmarks missing?

How documents naturally appear in processing workflows
How humans naturally interact with documents




Contributions:

¥

4 , — - ~
Beyond Document Page Classification: (F:orm?hz?_tmn cf’fthIt' pa?g [t)C :
Design, Datasets, and Challenges N Sons ruc |gn OT two nO\ée . a a.se =
WACV 2024 *oral urvey and recommendations:
 Complete DC methodology
 Dataset construction efforts
~ y
/Document Understanding Dataset and Desi T P
Evaluation esign of multi-faceted datase
ICCV 2023 = °* Comprehensive evaluation of SOTA

Competition on Document
UnderstanDing of Everything (DUDE)
L ICDAR 2023 *oral

Baseline and competition results

Calibrated, selective generation

/

37
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Document classification is more complex than reported

Covered in public

INPUT Page f
TASK v

Document bundle
fo

LABELS collision form purchase invoice

email;
resume;
application letter

Page splits

m

Page stream £,

wage slip, wage_slip; bank ticket_1,
statement; id_back, ticket_2, ...,
id_front; wage_slip ticket_ 9

Robotic accounting

\

USE-CASE | Insurance claims.é

HR job screening

Loan application Expenditure



A multi-faceted benchmark for generic DU challenges
the state-of-the-art

#list

Q: What are the Years mentioned in

Chart 1?
A: [2020, 2021, 2022]

#non-answerable

Q: In which year does the Net
Requirement exceed 25,0007

#abstractive #counting

Q: How many attorneys are listed for

the plaintiffs?
A: Two

Document UnderstanDing of Everything

Employment Insurance, August 2022

Reloased st 8:30 a.m. Eastern these in The Daily. Thursdy, October 10, 2021

e By, s, Getabr 30,3923
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Page 2

#layout-navigating #graphic-intensive

Q: Are the margins of the page
uniform on all pages?

A: Yes

#multi-hop #layout-navigating

m Dty Ty, Delober 3, 2022

Q: From the list of Top 10 Key
Recovery Components, which is the
last component listed on the second
page?

A: Hope

#abstractive #graphic-intensive

Q: Does this document contain any

checkboxes?
5 9

A: No




-Everything-, you mean?

Visual evidence (chart). What is the maximum percent- Visual evidence (map), multi-hop. Which states don’t
age of the blue graph line on page 87 A highly demanding have any marijuana laws? The multi-hop question requires

visually comprehending the map and linking knowledge
from its legend with depicted regions.

question that requires simultancous competency of visual
comprehension (locating chart and line color), navigating
through layout (determining adequate page), and numerical
comparison (deciding on the highest value).

Requires arithmetic. What is the ditference between
how much Operator Il and Operator 1l makes per hour?
The question requires table comprehension, determining
relevant values, dividing extracted integers, and correcting
the subject-verb agreement.

Wanag
ani Fansman (3
of 11l |3 2255
o 1l (§1 740}
ar Il (5 Tonr)

Requires counting. How many pages have a signature?

The question requires visual comprehension (recognition of
signature), knowledge about layout, and counting.

Source

ANLS Conf.

Ground truth

Human 1.0 —
TS 0.0 0.01
ChatGPT 0.0 —
GPT3 [Not-answerable | 0.0 —
T5-2D 0.0  0.69
HiVT5 0.0 041
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Centre de Visid per Computador




Our Baselines vs. Competition

Generative = must

LLMs are performant
Outperformed by models
+layout understanding
++longer sequence length

SOTAANLS <=50%! (@

. o Max Seq. Test , . } . ANLS4, ANLS4o ANLS4, ANLS.
Model Tnit. Params Length Setup ANLS.y T ECE.; ) AURC.;] ANLS4, Abs Ex NA Li
text-only Encoder-based models
Big Bird MPDocVQA 131M 4096 Concat* 26.27 30.14 44,22 30.67 7.11 40.26 12.75 8.46
BERT-Large MPDocVQA  334M 512 Max Conf * 2548 34.06 48.60 32.18 7.28 4223 5.88 11.13
Longformer MPDocVQA 148M 4096 Concat* 27.14 27.59 44.59 33.45 8.55 4358 10.78 10.62
text-only Encoder-Decoder based models
T5 base 223M 512 Concat-0* 19.65 19.14 48.83 25.62 5.24 3391 0 7.31
Ts MPDocVQA  223M 512 Max Conf.* 29.48 27.18 43.06 37.56 21.19 4422 0 10.56
T5 base 223M 512 Concat+FT 3741 10.82 41.09 40.61 42.61 48.20 53.92 16.87
Ts base 223M 8192 Concat+FT 41.80 17.33 49.53 4495 4762 50.49 63.72 7.56
text-only Large Language models (LLM)
ChatGPT gpt-3.5-turbo 20B 4096 Concat-0 35.07 16.73 4252 70.59 15.97
Concat-4 41.89 22.19 49.90 77.45 17.74
GPT3 davinci3 1758 4000 Concat-0 4395 18.16 54.44 73.53 36.32
Concat-4 47.04 22.37 57.09 63.73 40.01
text+layout Encoder-Decoder based models
T5-2D base 223M 512 Concat+FT 37.10 10.85 41.46 40.50 4248 48.62 52.94 3.49
T5-2D base 223M 8192 Concat+FT 42.10 17.00 48.83 4573 48.37 52.29 63.72 8.02
T5-2D large TTOM 8192 Concat+FT 46.06 14.40 35.70 48.14 50.81 55.65 68.62 5.43
text+layvout+vision models
HiVT5 316M 20480 Hierarchical+FT 23.06 11.91 54.35 22.33 3394 17.60 61.76 6.83
LayoutLMv3 MPDocVQA  125M 512 Max Conf.* 20.31 34.97 47.51 25.27 8.10 32.60 8.82 7.82
Human baseline 74.76 8§1.95 67.58 83.33 67.74
Answer  Calibration OOD Detection ANLS /answer type

Method ANLS 1 ECE | AURC |  AUROC 7t Ex Abs Li NA

UDOP+BLIP+GPT 50.02 2240 42.10 87.44 51.86 48.32 28.22 62.04

MMT5 37.90 5931 59.31 50.00 41.55 40.24 20.21 34.67

HiVT5+modules 35.59 28.03  46.03 51.24 30.95 35.15 11.76 52.50
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Diagnostic categories shed more light on what models
have most difficulty with
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Contributions: Efficient

DistilDoc: Knowledge Distillation for
Visually-Rich Document Applications
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Knowledge distillation facilitates small, specialized
task modules that enrich downstream representations
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DistilDoc streamlines research on compression ke

tallored to VDU tasks

1. Best KD method
« SImKD > vanilla KD, on par with teacher, + under covariate shift

2. Teacher-Student capacity gap
* VIT-Tiny SImKD ->16x smaller model retains 90% rel. accuracy

3. Impact of Pretraining on KD
* VIT2VIT > DIT2VIT, - under covariate shift

4. Architecture influence
« Random initialization & DLA-KD: CNN > VIT

5. Applicability for downstream tasks
* DLA-enriched spaeirg prompting contributes positively to DocVQA
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Conclusions

My dissertation addresses gaps, proposes methodologies opening new opportunities:

1. Limited research on scalable uncertainty quantification in NLP
% Comprehensive survey and benchmark
& Design of hybrid PUQ methods, offering better robustness and scalability

2. Disconnect DU research and applications
& Complete redefinition of document classification and methodology

3. Unpredictable performance of SOTA for generic DU
¥ Multi-faceted benchmark and competition incorporating all document modalities
Promote the layout modality and how to obtain it efficiently
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Takeaway messages

1. Evaluate Al capability, without forgetting about reliability and robustness
2. Need increasingly complex real-world benchmarks to track DU progress
3. Moving the goalpost to complete documents will drive efficiency research

4. Along way to understanding: multimodality, compositionality and memory
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APP: ask my thesis

Ask my thesis: Intelligent Automation for Al-Driven Document Understanding

Chat with the thesis manuscript by asking questions and receive answers with reference to the page

Clear Submit

FUNDAMENTALS

Maximum softmux pre ¥ (MSP): g(x) =

, with logit:

ts k nearest ne

huggingface.co/spaces/
jordyvl/ask_my thesis
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