
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Intelligent Automation for
AI-Driven Document
Understanding

Jordy Van Landeghem

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

March 2024

Supervisors:
Prof. Dr. Marie-Francine Moens
Prof. Dr. Matthew B. Blaschko





Intelligent Automation for AI-Driven Document
Understanding

Jordy VAN LANDEGHEM

Examination committee:
em. Prof. Dr. ir. Jean-Pierre Celis, chair
Prof. Dr. Marie-Francine Moens, supervisor
Prof. Dr. Matthew B. Blaschko, supervisor
Prof. Dr. ir. Johan Suykens
Prof. Dr. ir. Tinne Tuytelaars
Prof. Dr. Marcus Rohrbach
(TU Darmstadt)

Prof. Dr. Wenpeng Yin
(Penn State University)

Dr. Bertrand Anckaert
(Contract.fit)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

March 2024



© 2024 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Jordy Van Landeghem, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



Preface

This journey has been long and arduous, but I have finally reached an end. At
this end, I have a thesis that I am proud of, and I have learned a lot. As I look
back, I have been very fortunate to have had the support of many people, and I
would like to take this opportunity to thank them.

First and foremost, I would like to thank my supervisors, Sien and Matthew,
for their guidance and support throughout this journey. Sien has taught me
the importance of being thorough and meticulous, striving for diligence and
perfection from the get-go. I still remember how patiently she helped me with
my first paper, holding a Sunday afternoon call from her attic/home-office,
helping me hone the presentation and writing. Involving Matthew as the co-
supervisor has been the best decision for my personal development, as he offered
a different perspective on my work, always challenging me to look at problems
from the lens of statistical theory and machine learning fundamentals. My
knee-jerk reaction to start implementing things as soon as possible was often
met with a “slow down, think about it first” from Matthew, which has been
invaluable in my development as a researcher. I am grateful to both of them
for their patience and understanding, and for giving me the freedom to explore
my own ideas and interests.

Next, a sincere thanks to my jury members, for taking the time to read my
thesis and for their valuable feedback. Furthermore, I would like to thank
het Vlaams Agentschap Innoveren & Ondernemen (VLAIO) for awarding the
Baekeland grant without which this PhD would not have been possible.

Pol & Bertrand, thanks for having me contribute to your dream to rid the
world of boring administrative processes and paperwork. Technically my bosses,
but in reality you are the embodiment of leadership by example, and I am
grateful for the many lessons I have learned from you. I am grateful for the
many opportunities you have given me to grow as a researcher and as a person.
Many thanks to my past and present colleagues at Contract.fit, for always

i



ii PREFACE

preaching automation, inspiring me, and for having fun along the way. I am
grateful to my LIIR colleagues at KU Leuven, particularly the folks from office
4.34 for the many interesting discussions and whiteboard sessions, whenever I
occasionally popped into the office.

I was fortunate to travel to many places during my PhD (Lausanne, Lisbon,
Barcelona, San Jose, Paris, Waikoloa), and I have met many people along the
way. My DUDEs, you have been the trigger to complete my PhD, reinvigorating
my passion for research and inspiring me for my future career. How crazy is it
that we conceived the seeds of the DUDE project in a pirates bar, on a
hotel rooftop, and from a hospital bed after my back surgery?

Finally, I would like to thank my family and friends for their support and
encouragement throughout this journey. My parents, Peter en Nadine, you
have showed me that hard work pays off, and merci for the many sacrifices you
have made to give me the best possible education and life. Marijke, you are
the love of my life, and although I am not religious, you are my goddess, de
mammiej. Feliz, when you came into our lives, you added an extra dimension.
I used to see in 2D, now I see in 3D. Forever your father, your pappiej. Wes en
Jen, thanks for showing me to never give up, keep on pushing, even when you
are at your lowest, there is a way out, and only hard work will get you there.

Cornbois -Bryan, Emile, (even) Jan, for our friendship, I fail to make an
exhaustive definition. I wish for many more years of friendship from my like-
minded brothers. John, Teunen, Wannes, if there is ever a zombie apocalypse, I
know that I can count on you to have my window. Kessel-city - Poohke, Vinny,
Kweinch etc., thanks for keeping on pushing the bar higher, and inspiring me
with your ambition and drive. Gustaf, thanks for the many laughs (#velleke)
and the much-needed distraction. Elstipoes, you are my oldest friend, and I am
grateful for the many years of friendship. Woutje, thanks for your contagious
optimism and the mancave during university. Leuvenbende, you were the
ones that made university fun and enjoyable. Individually and together you are
beautiful people, and I cherish our yearly reunions. Lauren en Yannick, thanks
for letting me win at Mario Kart. I might be forgetting some people, but I
would like to thank all my friends for bringing joy, for keeping me grounded,
and for reminding me that there is more to life than work.

Having studied literature in my Bachelor’s, it feels appropriate to finish with a
quote wrongly attributed to Ernest Hemingway: “Write drunk; edit sober.”

Jordy Van Landeghem
Gurdo, Pogomeister, Jorre, De Van Laaandeghem

February, 2024
Kessel, Belgium



Abstract

Human communication is increasingly document-based, requiring machines
to understand a wide variety of visually-rich documents to assist humans in
their daily lives. Amid the digital evolution, documents continue to facilitate
crucial human and organizational interactions but are tethered to manual
processing, causing inefficiency. We examine why organizations lag in adopting
automated document processing solutions and outline two primary challenges:
the complexity of processing long, multimodal documents algorithmically and
the necessity for reliability and control over associated risks. Automated decision-
making is key to improving the efficiency of document processing, but the current
state-of-the-art technology is not yet reliable and robust enough to be deployed
in autonomous systems.

The practical objective set is to develop Intelligent Automation (IA) systems
capable of estimating confidence in their actions, thereby increasing throughput
without accruing additional costs due to errors. We analyze the key challenges
and propose solutions to bridge the gap between research and practical
applications, with a focus on realistic datasets and experimental methodologies.
Building upon foundations of Document Understanding (DU), this dissertation
introduces advanced methodologies combining Machine Learning, Natural
Language Processing, and Computer Vision.

Addressing the evident gaps in research, this work presents novel methods for
predictive uncertainty quantification (PUQ) alongside practical frameworks for
evaluating the robustness and reliability of DU technologies. The contribution
culminates in the introduction of two novel multipage document classification
datasets and a multifaceted benchmark, DUDE , designed to rigorously
challenge and assess the state-of-the-art in DU. Extensive experiments across
these datasets reveal that while advancements have been made, significant
room for improvement remains, particularly in long-context modeling for
multipage document processing and calibrated, selective document visual
question answering. Efficient DU is also explored, revealing the effectiveness
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of knowledge distillation (KD) model compression in visually-rich document
layout analysis (DLA) and classification.

Through empirical studies and methodological contributions, this dissertation
has the following contributions and findings:
First, in a benchmarking study of established PUQ methods on real-world text
classification, we find that our novel hybrid PUQ method ‘Concrete Dropout
Ensemble’ performs best, enhancing in-domain calibration and novel class
detection, even at a smaller ensemble size. Detailed ablation experiments reveal
the impact of prior, neural architecture, and hyperparameter choices on PUQ
estimation quality.
Second, on a prototypical DU task, we identify challenges in DU progress
and propose a formalization of multipage document classification scenarios,
constructed novel datasets, and conducted an experimental analysis showing
the promise of multipage representation learning and inference.
Third, we introduce DUDE, incorporating multifaceted challenges and principles
for a comprehensive evaluation of generic DU. Next to our own benchmarking,
we organize a competition, revealing that while newer document foundation
models show promise, they struggle with questions involving visual evidence
or complex reasoning. Moreover, we find severe problems in the ability of
Large Language Models (LLMs) to reason about documents in their entirety,
highlighting issues with hallucination, long-context reasoning and control.
Fourth, we propose the first methodology for enriching documents with semantic
layout structure using distilled DLA models. We apply KD to visual document
tasks, unraveling the influence of various task and architecture components.

Finally, the dissertation concludes with a discussion of the findings and
implications for future research, emphasizing the need for advancements in
multipage document representation learning and the importance of realistic
datasets and experimental methodologies to measurably move forward to reliable
and robust IA-DU technology.



Beknopte samenvatting

Menselijke communicatie is in toenemende mate documentgebaseerd, waarbij
machines een breed aanbod aan visueel-rijke documenten moeten begrijpen
om mensen in hun dagelijks leven te assisteren. Te midden van de digitale
evolutie blijven documenten cruciale menselijke en organisatorische interacties
faciliteren, maar zijn ze gebonden aan handmatige verwerking, wat inefficiëntie
veroorzaakt. We onderzoeken waarom organisaties achterblijven bij het
adopteren van geautomatiseerde documentverwerkingsoplossingen en schetsen
twee primaire uitdagingen: de complexiteit van het algoritmisch verwerken van
lange, multimodale documenten en de noodzaak van betrouwbaarheid en controle
over daarmee samenhangende risico’s. Geautomatiseerde besluitvorming is
essentieel voor het verbeteren van de efficiëntie van documentverwerking, maar
de huidige stand van de technologie is nog niet betrouwbaar en robuust genoeg
om ingezet te worden in autonome toepassingen.

Het praktische doel dat gesteld wordt, is het ontwikkelen van systemen voor
Intelligente Automatisering (IA) die in staat zijn om vertrouwen in hun acties te
schatten, daarmee de doorvoer verhogend zonder extra kosten vanwege fouten.
We analyseren de belangrijkste uitdagingen en stellen oplossingen voor om de
kloof tussen onderzoek en praktische toepassingen te overbruggen, met een focus
op realistische datasets en experimentele methodologieën. Voortbouwend op
de fundamenten van Documentinterpretatie (DI), introduceert dit proefschrift
geavanceerde methodologieën die Machinaal Leren, Natuurlijke Taalverwerking
en Computer Visie combineren.

Door de duidelijke hiaten in onderzoek aan te pakken, presenteert dit werk
nieuwe methoden voor predictieve onzekerheidskwantificering (POK) naast
praktische kaders voor het evalueren van de robuustheid en betrouwbaarheid
van DI-technologieën. De bijdrage culmineert in de introductie van twee
nieuwe datasets voor classificatie van multipagina documenten en een veelzijdige
benchmark, DUDE , ontworpen om de state-of-the-art in DI rigoureus
uit te dagen en te beoordelen. Uitgebreide experimenten met deze datasets
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onthullen dat er weliswaar vooruitgang is geboekt, maar dat er nog significant
veel ruimte is voor verbetering, met name in de lange-contextmodellering voor
de verwerking van multipagina documenten en gekalibreerd, selectief visueel
vraagbeantwoording van documenten. Meer schaalbaar DI wordt ook verkend,
waarbij de effectiviteit van kennisdistillatie (KD) voor modelcompressie in
visueel-rijke layoutanalyse (DLA) en classificatie van documenten aan het licht
komt.

Door middel van empirische studies en methodologische bijdragen, heeft dit
proefschrift de volgende bijdragen en bevindingen:
Ten eerste vinden we in een benchmarkstudie van gevestigde POK-methoden
op tekstclassificatie in de echte wereld dat onze nieuwe hybride POK-methode
’Concrete Dropout Ensemble’ het beste presteert, de kalibratie binnenshuis
verbeterend en detectie van nieuwe klassen, zelfs met een kleiner ensemble.
Gedetailleerde ablatie-experimenten onthullen de impact van voorafgaande
kennis, neurale architectuur en keuzes van hyperparameters op de kwaliteit van
POK-schatting.
Ten tweede identificeren we uitdagingen in de vooruitgang van DI en stellen een
formalisatie voor van multipagina documentclassificatiescenario’s, bouwen novel
datasets, en voeren een experimentele analyse uit die de belofte van multipagina
representatie-leren en inferentie toont.
Ten derde introduceren we DUDE, waarin veelzijdige uitdagingen en principes
worden voorgesteld voor een uitgebreide evaluatie. Naast onze eigen
benchmarking organiseren we een competitie, waaruit blijkt dat hoewel nieuwere
modellen veelbelovend zijn, ze het moeilijk hebben met vragen die visueel bewijs
of complex redeneren vereisen. Bovendien vinden we ernstige problemen in het
vermogen van Grote Taalmodellen (LLMs) om over documenten in hun geheel
te redeneren, wat problemen benadrukt met hallucinatie, redeneren met lange
context en controle.
Ten vierde stellen we de eerste experimentele methodologie voor om documenten
te verrijken met semantische layoutstructuur met behulp van gedestilleerde
DLA-modellen. We passen KD toe op visuele documenttaken, waarbij we de
invloed van verschillende architectuurcomponenten van taken ontrafelen.

Ten slotte sluit het proefschrift af met een bespreking van de bevindingen en
implicaties voor toekomstig onderzoek, waarbij de noodzaak wordt benadrukt
voor vooruitgang in multipagina documentrepresentatie-leren en het belang van
realistische datasets en experimentele methodologieën om meetbaar vooruitgang
te boeken naar betrouwbare en robuuste IA-DI technologie.



BEKNOPTE SAMENVATTING vii



List of Abbreviations

AAPD Arxiv Academic Paper Dataset

Acc_ID Accuracy in-domain

Acc_OOD Accuracy out of domain

AI Artificial Intelligence

ANLS Average Normalized Levenshtein Similarity

AUPR Area Under the Precision-Recall Curve

AURC Area-Under-Risk-Coverage-Curve

AUROC Area Under the Receiver Operating Characteristic curve

BDL Bayesian Deep Learning

BNN Bayesian Neural Network

BPM Business Process Management

CE Cross-Entropy

CER Character Error Rate

COCO Common Objects in Context

CSF Confidence Scoring Function

CV Computer Vision

DC Document Classification

DG Document Generation

viii



List of Abbreviations ix

DL Deep Learning

DLA Document Layout Analysis

DNN Deep Neural Network

DocAI Document AI

DocVQA Document Visual Question Answering

DOD Document Object Detection

DU Document Understanding

DUDE Document UnderstanDing of Everything

ECE Expected Calibration Error

ELBO Evidence Lower Bound

ERM Empirical Risk Minimization

FasterRCNN Faster Region-based Convolutional Neural Network

FP False Positives

i.i.d. Independent and Identically Distributed

IA Intelligent Automation

ICDAR International Conference on Document Analysis and Recognition

IDP Intelligent Document Processing

IOB/IOBES Inside, Outside, Beginning / End, Single

KD Knowledge Distillation

KIE Key Information Extraction

LLM Large Language Model

MAP Maximum-a-Posteriori

mAP Mean Average Precision

MCD Monte Carlo Dropout



x List of Abbreviations

MCMC Markov Chain Monte-Carlo

MDLT Multi-Domain Long-Tailed Recognition

MECE Mutually Exclusive and Collectively Exhaustive

MI Mutual Information

ML Machine Learning

MSE Mean Squared Error

MSP Maximum Softmax Probability

MU Model Uncertainty

NLG Natural Language Generation

NLL Negative Log Likelihood

NLP Natural Language Processing

NN Neural Network

OCR Optical Character Recognition

OOD Out-of-Distribution

PCC Pearson Correlation Coefficient

PUQ Predictive Uncertainty Quantification

RERM Regularized Empirical Risk Minimization

ResNet Residual Network

RPA Robotic Process Automation

SaaS Software-as-a-service

SNGP Spectral-normalized Neural Gaussian Process

SOTA State-of-the-art

STP Straight-Through-Processing

TSR Table Structure Recognition



LIST OF ABBREVIATIONS xi

VDU Visual Document Understanding

VI Variational Inference

VLM Vision Language Model

VQA Visual Question Answering

VRD Visually-Rich Document

WER Word Error Rate





Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations xi

Contents xiii

List of Figures xix

List of Tables xxv

1 Introduction 1
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Statement and Questions . . . . . . . . . . . . . . . . 6

1.2.1 Reliable and Robust Deep Learning . . . . . . . . . . . 6
1.2.2 Realistic and Efficient Document Understanding . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Fundamentals 11
2.1 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Probabilistic Evaluation . . . . . . . . . . . . . . . . . . 15
2.1.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3.1 Convolutional Neural Networks . . . . . . . . . 16
2.1.3.2 Language Neural Networks . . . . . . . . . . . 17
2.1.3.3 Transformer Network . . . . . . . . . . . . . . 18

2.2 Reliability and Robustness . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Generalization and Adaptation . . . . . . . . . . . . . . 22
2.2.2 Confidence Estimation . . . . . . . . . . . . . . . . . . . 23
2.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 24

xiii



xiv CONTENTS

2.2.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Predictive Uncertainty Quantification . . . . . . . . . . 30
2.2.6 Failure Prediction . . . . . . . . . . . . . . . . . . . . . 32

2.3 Document Understanding . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Task Definitions . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.4 Challenges in Document Understanding . . . . . . . . . 38

2.3.4.1 Long-Context Modeling . . . . . . . . . . . . . 39
2.3.4.2 Document Structure Modeling . . . . . . . . . 40

2.4 Intelligent Automation . . . . . . . . . . . . . . . . . . . . . . . 41

I Reliable and Robust Deep Learning 43

3 Benchmarking Scalable Predictive Uncertainty in Text Classification 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Uncertainty Methods . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Quantifying Uncertainty in Deep Learning . . . . . . . . 51
3.3.2 Predictive Uncertainty Methods . . . . . . . . . . . . . 52

3.3.2.1 Monte Carlo Dropout . . . . . . . . . . . . . . 53
3.3.2.2 Deep Ensemble . . . . . . . . . . . . . . . . . . 53
3.3.2.3 Concrete Dropout . . . . . . . . . . . . . . . . 54
3.3.2.4 Heteroscedastic Extensions . . . . . . . . . . . 54

3.3.3 Uncertainty Estimation . . . . . . . . . . . . . . . . . . 55
3.3.4 Motivating Hybrid Approaches . . . . . . . . . . . . . . 58
3.3.5 Uncertainty Calibration under Distribution Shift . . . . 59

3.4 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Proposed Hybrid Approaches . . . . . . . . . . . . . . . 61
3.4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . 66
3.4.5 Experimental design . . . . . . . . . . . . . . . . . . . . 66

3.4.5.1 In-domain Setting . . . . . . . . . . . . . . . . 67
3.4.5.2 Cross-domain Setting . . . . . . . . . . . . . . 67
3.4.5.3 Novelty Detection Setting . . . . . . . . . . . . 68

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.1 Experiment: In-domain . . . . . . . . . . . . . . . . . . 70
3.5.2 Experiment: Cross-domain . . . . . . . . . . . . . . . . 71
3.5.3 Experiment: Novelty Detection . . . . . . . . . . . . . . 73
3.5.4 Experiment: Ablations . . . . . . . . . . . . . . . . . . . 75

3.5.4.1 Diversity . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS xv

3.5.4.2 NLP Architecture . . . . . . . . . . . . . . . . 77
3.5.4.3 Ensemble size M . . . . . . . . . . . . . . . . . 79
3.5.4.4 Concrete Dropout p . . . . . . . . . . . . . . . 80

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Additional Uncertainty Approaches . . . . . . . . . . . . . . . . 85

3.7.1 Stochastic Gradient MCMC Methods . . . . . . . . . . 86
3.7.2 Spectral-normalized Neural Gaussian Process . . . . . . 87

3.7.2.1 SNGP Results . . . . . . . . . . . . . . . . . . 88
3.7.2.2 SNGP Discussion . . . . . . . . . . . . . . . . 90

3.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.9 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 91

II Realistic and Efficient Document Understanding 93

4 Beyond Document Page Classification: Design, Datasets, and
Challenges 94
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 Balancing Research & Applications . . . . . . . . . . . . . . . . 100
4.4 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Challenges and Guidelines . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Divergence of Tasks: f . . . . . . . . . . . . . . . . . . . 106
4.5.2 Divergence of Label Space: Y . . . . . . . . . . . . . . . 107
4.5.3 Divergence of Input Data: X . . . . . . . . . . . . . . . 108
4.5.4 Maturity of Evaluation Methodology . . . . . . . . . . . 110

4.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Document UnderstanDing of Everything (DUDE ) 112
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 DUDE Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Gathering Documents . . . . . . . . . . . . . . . . . . . 120
5.3.2 Annotation Process . . . . . . . . . . . . . . . . . . . . 120
5.3.3 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . 122
5.3.4 Diagnostic Subsets . . . . . . . . . . . . . . . . . . . . . 124
5.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 DUDE Competition . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 Challenge Objectives . . . . . . . . . . . . . . . . . . . . 127
5.4.2 Challenge Contributions . . . . . . . . . . . . . . . . . . 128
5.4.3 Motivation and Scope . . . . . . . . . . . . . . . . . . . 128

5.4.3.1 Desired Generalization. . . . . . . . . . . . . . 129



xvi CONTENTS

5.4.4 DUDE Competition Protocol . . . . . . . . . . . . . . 130
5.4.4.1 Task Formulation . . . . . . . . . . . . . . . . 131
5.4.4.2 Evaluation Protocol . . . . . . . . . . . . . . . 131

5.5 DUDE Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5.2 Analysis & Discussion . . . . . . . . . . . . . . . . . . . 133

5.6 Detailed Results Analysis . . . . . . . . . . . . . . . . . . . . . 135
5.6.1 Within Model Class Analysis . . . . . . . . . . . . . . . 135

5.6.1.1 Encoder vs. Decoder . . . . . . . . . . . . . . 135
5.6.1.2 Incorporating Layout & Vision . . . . . . . . . 135
5.6.1.3 Toward Long Document Processing . . . . . . 135
5.6.1.4 Diagnosis of LLM Results . . . . . . . . . . . . 136

5.6.2 Assessing Confidence . . . . . . . . . . . . . . . . . . . . 137
5.7 DUDE Competition Results . . . . . . . . . . . . . . . . . . . 137

5.7.1 Submitted Methods . . . . . . . . . . . . . . . . . . . . 137
5.7.2 Performance Analysis . . . . . . . . . . . . . . . . . . . 138

5.8 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 143

6 DistilDoc: Knowledge Distillation for Visually-Rich Document
Applications 144
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.2 Architectures and Backbones . . . . . . . . . . . . . . . 152
6.3.3 KD Methods . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.5 DLA-enriched LLM prompting . . . . . . . . . . . . . . 157

6.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 162

7 Conclusion 165
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Perspectives For Future Research . . . . . . . . . . . . . . . . . 171

7.2.1 Open Problems In Reliability & Robustness . . . . . . . 172
7.2.2 A Future-Proof Design Of IA-DU . . . . . . . . . . . . . 173

7.2.2.1 The ‘Ultimate’ DU Dataset? . . . . . . . . . . 173
7.2.2.2 A Feature-complete IA-DU Solution? . . . . . 178

Bibliography 181

A Appendix - PUQ 223
A Implementation Details . . . . . . . . . . . . . . . . . . . . . . 223



CONTENTS xvii

A.1 Software and Data . . . . . . . . . . . . . . . . . . . . . 223
A.2 Hyperparameter Defaults . . . . . . . . . . . . . . . . . 223

B Practical Considerations . . . . . . . . . . . . . . . . . . . . . . 224
B.1 Take-home Summary . . . . . . . . . . . . . . . . . . . . 224
B.2 Compute vs. Performance Trade-off . . . . . . . . . . . 225

C Detailed Experiment Results . . . . . . . . . . . . . . . . . . . 226
C.1 Zoom-in Benchmark Evidence . . . . . . . . . . . . . . . 226
C.2 Absolute Benchmark Results . . . . . . . . . . . . . . . 226

B Appendix - BDPC 231
A Existing DC Datasets . . . . . . . . . . . . . . . . . . . . . . . . 231
B Visualization of Proposed DC Datasets . . . . . . . . . . . . . . 232

C Appendix - DUDE 233
A Baseline Experiments Setup . . . . . . . . . . . . . . . . . . . . 233

A.1 Hyperparameter Defaults . . . . . . . . . . . . . . . . . 233
A.2 Generative LLM Prompt Fine-tuning . . . . . . . . . . 233
A.3 Confidence Estimation . . . . . . . . . . . . . . . . . . . 234
A.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 236

B Qualitative Examples . . . . . . . . . . . . . . . . . . . . . . . 236
B.1 Qualitative Examples - Competition . . . . . . . . . . . 242

D Appendix - KDD 245
A Code and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 245
B Implementation Details . . . . . . . . . . . . . . . . . . . . . . 245
C Task Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D Additional Experiment Results . . . . . . . . . . . . . . . . . . 248

D.1 Tobacco-3482 Results . . . . . . . . . . . . . . . . . . . 250
D.2 PRImA Results . . . . . . . . . . . . . . . . . . . . . . . 250
D.3 RVL-CDIP-N Results . . . . . . . . . . . . . . . . . . . 250
D.4 Downstream DocVQA Results . . . . . . . . . . . . . . 250
D.5 Ablation Experiments . . . . . . . . . . . . . . . . . . . 250

Curriculum 255

Publications 257





List of Figures

1.1 Overview of publications and how they relate to the chapters. . 9
1.2 Visual Overview of the research questions and how they relate

to the chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Scatter plot of a ternary problem (K = 3, N = 100) in
the probability simplex space. Example of overconfident
misprediction (above is a Shiba Inu dog) and correct sharp
prediction (clear image of Beagle). . . . . . . . . . . . . . . . . 16

2.2 Sketch of a CNN architecture. The input is a 2D image, which
is iteratively convolved with a set of learned filters detecting
specific input features, e.g., edges, corners, blobs, to produce
feature maps. Feature maps are then downsampled using a
pooling operation. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Illustration of the main attention mechanisms in a Transformer. 19
2.4 A simple illustration of common DU tasks on an example

document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Inefficiency of document foundation models for processing multi-

page documents, illustrated with LayoutLMv3 [187]. Notation: L
pages, T text tokens, M linearized visual patches, S Transformer
layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Hi-VT5 architecture for multipage, extractive DocVQA. . . . . 40

3.1 Visualization of output layer blocks. The left block denotes
standard softmax (multi-class) or sigmoid (binary/multi-label)
output. On the right, the heteroscedastic model outputs a
normal distribution N (µ(x), diag(σ2(x)) parametrizing mean
and variance by the logits coming from two separate preceding
feedforward layers. . . . . . . . . . . . . . . . . . . . . . . . . . 55

xix



xx LIST OF FIGURES

3.2 Simplified block-diagrams for each of the NN architectures,
demonstrating on which layer weights dropout is applied.
(a) The TextCNN model architecture with 3 kernels (K1− 3), E
word embedding dimensionality and F number of feature maps
per kernel.
(b) The BERT model architecture with L Transformers blocks,
hidden size H and number of self-attention heads A. . . . . . . 65

3.3 In-domain results with critical difference diagram comparing all
methods by average rank, with the calculated critical difference in
the top-left and Friedman χ2 p-value top-right. Concrete Dropout
Ensemble achieves the highest NLL rank. While comparing over
5 datasets, the critical difference is large, with only the two
aforementioned methods significantly differing from MC Dropout. 69

3.4 Lowest accuracy generalization gap, in-domain (Acc_ID) minus
out of domain (Acc_OOD) accuracy (y-axis), of all predictive
uncertainty methods per source−→target domain combination
(x-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Average rank of in-domain NLL for the 4 source datasets (left)
and out-of-domain accuracy over 12 source-target configurations
(right) for all tested predictive uncertainty methods. . . . . . . 72

3.6 Average rank of OOD AUROC over 12 cross-domain settings for
predictive uncertainty methods. . . . . . . . . . . . . . . . . . . 72

3.7 AUROC detection magnitude (y-axis) mapped over OOD
accuracy (x-axis) with a legend on the right for methods that
support uncertainty estimation. . . . . . . . . . . . . . . . . . . 73

3.8 We report the Pearson Correlation Coefficient (PCC) between
uncertainty values and binary variable ID-OOD for 5 benchmark
datasets. Higher absolute correlation score points to stronger
association of uncertainty and novelty detection. *Model
Uncertainty (MU),DataUncertainty (DU),Mutual Information
(MI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Novelty detection AUROC and AUPR pairwise comparison counts
of wins/draws/losses. . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 Novelty detection CD diagram of AUROC. . . . . . . . . . . . . 75
3.11 Comparison with AUROC(↑) and Epistemic uncertainty PCC(↑)

for task and dataset-specific differences in novel class detection.
Methods with 0 correlation do not support model uncertainty
quantification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12 Detailed accuracy scores mapped over diversity measured by
average KL divergence for each of the benchmark datasets. . . 77



LIST OF FIGURES xxi

3.13 Novelty detection scores mapped per architecture for the
benchmark datasets without dedicated OOD split. The legend
of Fig. 3.11 applies here. . . . . . . . . . . . . . . . . . . . . . . 78

3.14 Detailed AUROC-epistemics (PCC) scores mapped per architec-
ture on CLINC150. Best performance: upper-right corner. The
legend of Fig. 3.11 applies here. . . . . . . . . . . . . . . . . . . 78

3.15 Visualization of representative dataset-quantity/metric combina-
tions mapped over stepwise increasing ensemble sizeM . Note that
positive and negative correlations are corollary to the quantity
reported. Given the small relative differences, plots are best
viewed online. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.16 Learned layer-wise dropout probability per layer for each method
with Concrete Dropout. The first 3 layers are the CNN kernels
(K1− 3), followed by the penultimate layer µ, possibly with σ
for modeling heteroscedasticity. The legend of Fig. 3.17 applies
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.17 Top: Average epoch of convergence per dataset. Bottom:
Average learned Concrete Dropout probability per dataset over
predictive uncertainty methods. We observe very dataset-
dependent dropout rates. . . . . . . . . . . . . . . . . . . . . . . 81

3.18 CD diagram of NLL for base and SNGP method combinations
with a TextCNNv2 backbone. . . . . . . . . . . . . . . . . . . . 88

3.19 CD diagram of AUROC for base and SNGP method combinations
with a TextCNNv2 backbone. . . . . . . . . . . . . . . . . . . . 88

3.20 AUROC scores over unique (abbreviated) methods per dataset.
Error bars are computed over multiple runs (5 seeds) for non-
ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.21 Left: AUROC scores (y-axis) over all datasets with unique runs
plotted for base (s = 0) and SNGP TextCNNv2 models with
varying spectral normalization multipliers (x-axis). Lines with
shading indicate the trend observed between AUROC and s.
Right: AUROC mean and stddev over runs, sampling and datasets. 90

4.1 Overview of different classification tasks that can be found in
real-world VDU applications, that are not sufficiently addressed
in DC research. The classification task notation and definitions
are introduced in Section 4.2. . . . . . . . . . . . . . . . . . . . 95

4.2 Divergence of input data. The first image is an example
from DC benchmark RVL-CDIP [165], the second one from
Docile [422] for KIE, while the third one comes from Info-
VQA [310], illustrating the visual-layout richness of modern
VRDs vs. the monotonicity of most DC document data. . . . . . 108



xxii LIST OF FIGURES

5.1 QA as a natural language interface to multipage VRDs. . . . . 115
5.2 Visualization of inter-document similarities between samples

from different datasets (t-SNE over TF-IDF representations of
1k passages from each source). . . . . . . . . . . . . . . . . . . 118

5.3 Distribution of the number of tokens in documents, answers, and
questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 While other datasets are predominantly single-page only, the
number of pages featuring in DUDE is more diverse, yet still
biased towards shorter documents. . . . . . . . . . . . . . . . . 123

5.5 Count of particular diagnostic categories in a subset of 2.5k
test set QA pairs annotated in detail to help analyze models’
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Illustration of MDLT as applicable to the DUDE problem
setting. The y-axis aggregates skills related to specific KIE
or reasoning tasks over document elements (checkbox, signature,
logo, footnote, ...). The x-axis denotes the obtained samples (QA
pairs) per task. Each domain has a different label distribution
P (Y ), typically relating to within-domain document properties
P (X).This training data exhibits label distribution shifts across
domains, often requiring zero-shot generalization (marked red). 130

5.7 We report the average ANLS for the human expert vs. the
best-performing model per diagnostic category as a ceiling analysis.133

5.8 We report the average ANLS per diagnostic category for each
of the submitted methods vs. human and a baseline method
T5-base. Since the diagnostic dataset contains a different
number of samples per diagnostic category, we added error
bars representing 95% confidence intervals. This helps visually
determine statistically significant differences. . . . . . . . . . . . 141

5.9 A histogram (bins=8, matching ANLS-threshold of 0.5) of the
average ANLS rate per QA pair when summing ANLS scores
over competitor methods. . . . . . . . . . . . . . . . . . . . . . 142

5.10 Left: A histogram over the number of questions relative to the
number of pages in the document (limited to 20 pages). Right:
A line plot of the average ANLS score per QA pair: – documents
of length at least (x-axis) pages. . . . . . . . . . . . . . . . . . . 142

6.1 DistilDoc presents the first framework to investigate the
potential of KD-based DLA model compression to enrich LLM
prompts with logical layout structure to practically and
efficiently improve downstream applications such as DocVQA. . 147



LIST OF FIGURES xxiii

6.2 Proposed experimental methodology to comprehensively
study all aspects (left-to-right) that impact KD methods
(response, feature; projectors) adapted for VDU task specifics
(architecture, weight initialization, pretraining & finetuning
datasets, student capacity). Downstream setups evaluate the
robustness of distilled students. . . . . . . . . . . . . . . . . . . 150

7.1 Example of ground truth formatting for a question-answer pair
in DUDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.1 Comparison with NLL(↓) for dataset-specific differences in
method performance. . . . . . . . . . . . . . . . . . . . . . . . . 227

A.2 We report the Pearson Correlation Coefficient (PCC) between
uncertainty values and binary variable ID-OOD for Amazon
product review datasets. A higher absolute correlation score
points to stronger association of uncertainty and out-of-domain
detection. *Model Uncertainty (MU), Data Uncertainty (DU),
Mutual Information (MI). . . . . . . . . . . . . . . . . . . . . . 228

A.3 A selection of most interesting Gaussian kernel density plots over
(abbreviated) model setup metrics evaluated on all datasets in
row order 20news (a-c), CLINC150 (d-f), imdb (g-i), Reuters (j-l),
AAPD (m-o). Each plot captures probabilistic density over correct
ID (green), incorrect ID (red) and OOD (purple).
From left to right, we have selected a high rank, middle rank, and
low-rank method and uncertainty quantity combination. The
density estimates demonstrate clear empirical difference over all
datasets for various uncertainty quantities. . . . . . . . . . . . 229





List of Tables

1.1 Comparative analysis of keywords in the ICDAR 2021 proceed-
ings. While many DU subtasks are represented, there is a lack
of keywords related to IA. Do note that calibration is used in
the context of camera calibration, and not in the context of
confidence estimation. . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sigmoid and softmax activation functions for binary and multi-
class classification, respectively. . . . . . . . . . . . . . . . . . . 15

2.2 Adapted from [16]. A summary of DU prior art is presented with
their architecture (E: Encoder, D: Decoder), the input (T: text,
V: vision, S: spatial features), the vision features branch and core
extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 In total, we consider 18 model setups, based on combining
methods and options from each column. (*) Deterministic
dropout can only combine with Deep Ensembles. CE stands
for cross-entropy loss. . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 font=tiny,skip=0pt . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 In-domain (left) combined Brier and NLL proper scoring rule

pairwise comparison counts of wins/draws/losses and (right)
ECE metric reported for comparing in-domain calibration. For
in-domain predictive accuracy, ensembles clearly are superior.
Considering only miscalibration, Concrete Dropout generally
adds calibration to predicted probabilities. The combination
with MC Dropout gives unpredictable ranking results. . . . . . 70

4.1 DU Benchmarks with their significant data sources and prop-
erties. Acronyms for tasks DC: Document Classification DLA:
Document Layout Analysis KIE: Key Information Extraction
QA: Question Answering TSR: Table Structure Recognition . . . 101

xxv



xxvi LIST OF TABLES

4.2 Statistical Comparison of public and proposed extended
multipage DC datasets. OOD refers to out-of-distribution
detection. #d and #p refer to number of documents or pages,
respectively. For the novel MP datasets, we report the average
number of pages. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Tested inference methods to classify multipaged documents
and simulate a true document classifier fd. Scope refers to the
independence assumption taken at inference time. . . . . . . . . 103

4.4 Base classification accuracy of DiT-base [259] (finetuned on RVL-
CDIP) evaluated on the test set of RVL-CDIP_MP per baseline fd
strategy. Best results per metric are boldfaced. $ refers to our
reproduction of results. . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Base classification accuracy of DiT-base [259] (finetuned on RVL-
CDIP) evaluated on the test set of RVL-CDIP_N_MP per baseline
fd strategy. Best results per metric are boldfaced. . . . . . . . 104

4.6 Best-case classification accuracy indicated with (∗) when com-
bining ’knowledge’ over different pages. ∆ refers to the absolute
difference with the first page only. . . . . . . . . . . . . . . . . 105

5.1 Summary of the existing English document datasets and our
challenge. BD stands for born-digital. Layout semantics are
abbreviated as (T)able, (L)ist, (F)igure, (Ch)art, and M(ap).
Comparison based on Azure Cognitive Services (3.2) OCR. . . 122

5.2 Data split counts. . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Summary of Baseline performance on the DUDE test set (all)

and diagnostic subset (do). Test setups are defined as Max Conf.:
predict one answer per page and return an answer with the
highest probability over all pages, Concat: predict on tokens
truncated to maximum sequence length, FT stands for fine-
tuning on DUDE training data, and -0 refers to zero-shot and
-4 few-shot inference. Average ANLS results per question type are
abbreviated as (Abs)tractive, (Ex)tractive, (N)ot-(A)nswerable,
(Li)st. (*) We report only results for best performing test setup
(either Max Conf. or Concat). All scalars are scaled between 0
and 100 for readability. . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Comparison of baselines using Concat or Max Conf strategies. . 138
5.5 Short descriptions of the methods participating in the DUDE

competition, in order of submission. The last submitted method
is considered for the final ranking. . . . . . . . . . . . . . . . . 139

5.6 Summary of Method performance on the DUDE test set.
Average ANLS results per question/answer type are abbreviated
as (Abs)tractive, (Ex)tractive, (N)ot-(A)nswerable, (Li)st. (*)
All scalars are scaled between 0 and 100 for readability. . . . . 140



LIST OF TABLES xxvii

6.1 Dataset usage for DIC, DLA, and downstream tasks. Symbols: P
= pretraining, DP = document pretraining, T = teacher training,
S = student training, * = subsampling, E = teacher/student
evaluation, D: downstream evaluation . . . . . . . . . . . . . . . 151

6.2 Prompt design following [482], with placeholders depending on
parameterization of document input (plain, space, DLA). . . . 159

6.3 Results for KD methods applied on DocLayNet [362]. . . . . . 159
6.4 Validation ANLS (scaled to %) of Llama-2-7b-chat [452] on

SP-DocVQA [309] (top) and InfographicVQA [310] (bottom),
where (if marked) the prompt is enriched with DLA predictions
from a ViT-B-based Mask-RCNN. . . . . . . . . . . . . . . . . 159

6.5 Performance per KD method over metrics averaged over
architectures on RVL-CDIP dataset (In-Domain) and RVL-CDIP-
N dataset (Out-Of-Distribution). . . . . . . . . . . . . . . . . . . 161

6.6 Results of different KD strategies benchmarked for D/ViT-B
teachers applied on the RVL-CDIP dataset. . . . . . . . . . . . 162

A.1 Compute and storage costs in Big-O notation [348] for uncertainty
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A.2 CLINC-OOS models with training timings (in seconds) per epoch
and total running time. . . . . . . . . . . . . . . . . . . . . . . 226

A.3 CLINC-OOS models with inference timings presented in unit time
for how many batches or samples can be processed in 1 second
wall-clock time over CPU and GPU. For the short sequences of
CLINC, both models allow a batch size of 32. . . . . . . . . . . 226

C.1 Hyperparameters used for fine-tuning T5, T5-2D and HiVT5 on
DUDE. When two values are placed in a single column, they
refer to the model’s versions with 512 and 8192 input sequence
length, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 234

D.1 Details of Vision Transformer model variants [101]. . . . . . . . 246
D.2 Details of the efficiency of model checkpoints considered in this

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
D.3 Results of different KD strategies benchmarked for ResNets

applied on the RVL-CDIP dataset. . . . . . . . . . . . . . . . 248
D.4 Results of different KD strategies benchmarked for ResNets

applied on the Tobacco-3482 dataset. . . . . . . . . . . . . . . 249
D.5 Results of different KD strategies benchmarked for ViT-B applied

on the Tobacco-3482 datasets. . . . . . . . . . . . . . . . . . . 249
D.6 Results of different KD strategies benchmarked for DiT-B applied

on the Tobacco-3482 dataset. . . . . . . . . . . . . . . . . . . 250
D.7 Results for DLA-KD experiments on PRImA dataset. . . . . . 250



xxviii LIST OF TABLES

D.8 Evaluation including relative runtime of KD methods on RVL-
CDIP-N, where from left-to-right results are grouped per KD
strategy, per backbone, per student size. . . . . . . . . . . . . . . 251

D.9 Results for KD methods when averaged over architectures and
student sizes on RVL-CDIP-N. . . . . . . . . . . . . . . . . . . . 251

D.10 Validation ANLS (scaled to %) of Llama-2-7b-chat [452] on
SP-DocVQA [309], with a KD-DLA model enriching the prompt. 252

D.11 Validation ANLS (scaled to %) of Llama-2-7b-chat [452] on
InfographicsVQA [310], with a KD-DLA model enriching the
prompt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

D.12 Results of different KD strategies benchmarked for ViT-B teacher
with randomly initialized (rand) ViT students applied on the
RVL-CDIP dataset. . . . . . . . . . . . . . . . . . . . . . . . . 253

D.13 Results of different KD strategies benchmarked for ResNet-101
teacher with randomly initialized (rand) ResNet-50 students
applied on the RVL-CDIP dataset. . . . . . . . . . . . . . . . . 253



Chapter 1

Introduction

“ Amid significant life events—like buying a house or expecting
your firstborn child—lies a less cheerful reality that I experienced
firsthand: the hassle of dealing with manual paperwork.

For the former case, this required a lot of back-and-forth with
the bank, the notary, and the real estate agent, with each of
them requiring a different set of documents (e.g., monthly pay
stubs, bank statements, copies of national registry, etc.) to be
filled in, signed, and sent back for processing.
On the side of the document processors, each document needed
to be classified, key information extracted, and the information
validated against other documents to be able to prove my
solvency in making an offer, applying for a loan, or being drafted
as the future house owner. In between all parties and external
organizations, even more documents were either created, adapted,
or passed along such as the offer, the loan agreement, the deed
of sale, a soil certificate, etc.

This juxtaposition of valuable moments in life with cumbersome
administrative procedures involving manual document
processing forms the backdrop against which I aim to explore
and propose potential solutions in this thesis.

”
1



2 INTRODUCTION

Documents are containers of information that are easily shareable. The concept
of a document dates back to when humans started writing and has been a
cornerstone of human communication ever since. In the age of digital technology,
documents are still the primary means of communication between humans and
organizations and form the backbone of many business processes. Human
communication is increasingly happening through digital channels, and the
COVID-19 pandemic has only accelerated this trend. We are increasingly living
in a “document society” [53], dependent on documents in our daily lives or for
recording second-hand knowledge. With instant gratification as the norm in
the digital age, people expect similar seamless interactions with businesses and
governments. While digitization has increased the speed and ease of document-
based communication, document processing remains a largely human effort with
organizations drowning under the sheer volume of documents they receive.

So why have organizations not switched en masse to
automated document processing?

The answer lies for some part in (I) the complexity of the task, and for the
other part in (II) the need for reliability and risk control.

(I) While it might be straightforward for a human (white-collar) worker to read
a long, structured document, understand its contents, categorize it, and extract
crucial information accordingly, this is not so easy for a machine. This could be
perceived as an instance of Moravec’s paradox [319], which states that tasks
that are easy for humans are hard for machines, and vice versa. However, in
recent times, significant strides forward have been made thanks to technological
advances combining Natural Language Processing (NLP), Computer Vision
(CV) and Machine Learning (ML). Document Understanding (DU) is
the umbrella term for both the end-to-end solution and the research field
studying to make machines interpret and understand documents (elaborated
on in Section 2.3). It has seen a surge in interest in the past few years, with
the rise of large-scale pretrained Language and Vision models (LLM, VLM)
[52, 94, 101, 187, 380, 383, 502] capable of modeling document inputs.

What makes DU challenging is that it encompasses multiple subtasks, each of
which is a research field in its own right, such as Optical Character Recognition
(OCR), Document Layout Analysis (DLA), Document Classification (DC), Key
Information Extraction (KIE), Visual Question Answering (VQA), etc. The
complexity of the task is further increased by the fact that documents are
multimodal, containing both text and images and that they are compositional,
i.e., the meaning of the document is not just the sum of its parts. Information
can appear in a wide range of forms including text, images, tables or graphs,
and be spread across multiple pages. Moreover, the meaning of a document
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can change depending on the context in which it is used. As an artifact of the
communication channel, not all documents are born digitally, and the quality
of the document can vary greatly, with some documents being handwritten,
scanned with low resolution, or even a picture of a document. Furthermore,
documents are often not standardized templates and can be highly variable in
terms of layout, structure, and content. Finally, the longer the document, the
more computationally demanding it becomes to process, and the more likely it
is to induce errors, which can be harder to detect.

Addressing the inherent challenges of document processing, and achieving high
levels of accuracy, processing speed, reliability, robustness, and scalability in
DU forms the applied scope of this thesis.

(II) Consider the example given of the birth certificate. While I might not
appreciate as much the manual handling of this document, if they had registered
my baby girl’s name (Feliz, Spanish writing without an accent on the ‘e’)
incorrectly, I would be pretty upset as this could have further repercussions.
Whereas this error might be easily rectified, it is not so easy to do so in the
case of a mortgage application, where the wrong information could lead to a
rejection of the application, or even worse, a loan agreement with the wrong
terms and conditions. This demonstrates that, even when full automation of
document processing is in high demand, it is not always desirable if the risk of
failure might be too large.
Nevertheless, a lot of the potential for automation remains untapped, and
organizations are increasingly looking for solutions to fully automate their
document processing workflows. However, full automation, implying perfect
recognition of document categories and impeccable information extraction is an
unattainable goal with the current state of technology [79].

The more realistic objective set is Intelligent Automation (IA) (elaborated
on in Section 2.4), where the goal is to have the machine estimate confidence
in its predictions, deriving business value with as high as possible volumes of
perfect predictions (Straight-Through-Processing, STP) without incurring extra
costs (False Positives, FP).
The leitmotif of this thesis will be the fundamental enablers of IA: confidence
estimation and failure prediction.

Calibrated uncertainty estimation with efficient and effective DU technology
will allow organizations to confidently automate their document processing
workflow, while keeping a human in the loop only for predictions with a higher
likelihood of being wrong. To date, however, little research has addressed the
question of how to make DU technology more reliable, as is illustrated in a toy
analysis (Table 1.1) reporting the absence of many IA-related keywords in the
Proceedings of the 2021 International Conference on Document Analysis and
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Recognition (ICDAR) [289].
The thesis aims to fill this gap by proposing novel methods for uncertainty
estimation and failure prediction (Part I), and by providing a framework for
benchmarking and evaluating the reliability and robustness of DU technology,
as close as possible to real-world requirements (Part II).

Table 1.1. Comparative analysis of keywords in the ICDAR 2021 proceedings. While
many DU subtasks are represented, there is a lack of keywords related to IA. Do note
that calibration is used in the context of camera calibration, and not in the context of
confidence estimation.

keyword freq keyword freq
document 3388 calibration/calibrate 33
classification 242 temperature scaling 0

key information 56 failure prediction
misclassification detection 0

question answering 106 out-of-distribution
OOD 25

layout analysis 223 predictive uncertainty 0

In the remainder of the Introduction, I will sketch the surrounding research
context, followed by the problem statement and research questions, and finally
the outline of the thesis manuscript.

1.1 Research Context

All chapters of this dissertation have been executed as part of the Baekeland
PhD mandate (HBC.2019.2604) with financial support of VLAIO (Flemish
Innovation & Entrepreneurship) and Contract.fit. The latter is a Belgian-based
software-as-a-service (SaaS) provider of Intelligent Document Processing (IDP)
drawing on innovations in DU to power their product suite (email-routing,
Parble), and my generous employer since 2017.

Some of the joint work (Chapter 5) has been partially funded by a PhD
Scholarship from AGAUR (2023 FI-3-00223), and the Smart Growth Operational
Programme under projects no. POIR.01.01.01-00-1624/20 (Hiper-OCR - an
innovative solution for information extraction from scanned documents) and
POIR.01.01.01-00-0605/19 (Disruptive adoption of Neural Language Modelling
for automation of text-intensive work).

Moreover, given that the dissertation work has been performed over a large
span of time, it warrants putting it in the larger context and dynamics of AI
innovations, the state of DU as a field, how notions of ’reliability’ have evolved
over time, and finally the business context.

https://www.parble.com/en
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This thesis started almost concurrently with the rise of the global COVID-
19 pandemic, making it hard to foster collaborations in the early stages. At
the start of the PhD, DU methodology was fairly established, with OCR and
Transformer-based pipelines such as BERT [94] and LayoutLM [502], which
is why we first prioritized the more fundamental challenge of decision-making
under uncertainty (Part I); which was followed by a step back, closer to applied
DU research (Part II).

The research community’s understanding of ‘reliability’ has also evolved over
time. When starting the work of Chapter 3, the notion of reliability was mostly
associated with uncertainty quantification and calibration. However, calibration
is not a panacea, and only fairly recently, Jaeger et al. [193] proposed a more
general framework encapsulating reliability and robustness. They promote the
more concrete and useful notion of failure prediction, which still involves
confidence/uncertainty estimation yet with an explicit definition of the failure
source which one wants to detect or guard against, e.g., in-domain test errors,
changing input feature distributions, novel class shifts, etc. Since I share a
similar view of the problem, I have focused following works on the more general
notion of failure prediction, which is also more in line with the business context
of IA.

Whereas we originally intended to work on multi-task learning of DU subtasks,
the rise of general-purpose LLMs offering a natural language interface to
documents rather than discriminative modeling (e.g., ChatGPT [52, 344]),
prompted us toward evaluating this promising technology in the context of
DU. More importantly, we observed the lack of sufficiently complex datasets
and benchmarks in DU that would allow us to tackle larger, more fundamental
questions such as ’Do text-only LLMs suffice for most low-level DU subtasks?’
(subsequently tackled in Chapter 5), which is why we shifted our focus to the
more applied research questions of benchmarking and evaluation (Part II).

Finally, the business context has also evolved over time. Originally, IDP was
practiced by legacy OCR companies; specialized vendors, offering a range of
solutions for specific document types (e.g., invoices, contracts, tax forms, etc.);
or cloud service providers, offering IDP as part of a larger suite of services
(e.g., AWS Textract, Azure Form Recognizer, etc.). However, the rise of both
open-source LLM development and powerful, though closed-source models has
lowered the barrier to entry for any new entrants or incumbents. This has led
to a commoditization of IDP, with the quality of the LLMs and the ease of
integration with existing business processes becoming key differentiators.
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1.2 Problem Statement and Questions

The general introduction sketches the context of the research, and motivates
the research questions. In this Section, I will formulate the problem statement
and research questions more formally and how they relate to the manuscript’s
contents.

1.2.1 Reliable and Robust Deep Learning

The dissertation opens with the more fundamental challenge of targeting
reliability and robustness in Deep Learning, which covers fairly abstract concepts
that have been used interchangeably and inconsistently in the literature. They
will be defined more extensively in Section 2.2, but for now, consider reliability
as the ability to avoid failure, robustness as the ability to resist failure, and
resilience as the ability to recover from failure [373, 438, 455]. In Chapter 3, we
focus on the more concrete objective of predictive uncertainty quantification
(PUQ), which shows promise for improving reliability and robustness in Deep
Learning (DL) [123, 140, 173, 455]. Concretely, PUQ methods are expected to
elucidate sources of uncertainty such as a model’s lack of in-domain knowledge
due to either training data scarcity or model misspecification, or its ability to
flag potentially noisy, shifted or unknown input data [136].

We observed that the majority of prior PUQ research focused on regression and
CV tasks, while the applicability of PUQ methods had not been thoroughly
explored in the context of NLP. As mentioned earlier, most DU pipelines (in
2020) were text-centric with a high dependency on the quality of OCR. Since
OCR is often considered a solved problem [262], we hypothesized that the main
source of error and uncertainty in DU would reside in the text representations
learned by deep neural networks (DNN)s. This is why we focused on the
more fundamental question of how well do PUQ methods scale in NLP? More
specifically, we restricted the scope to the prototypical, well-studied task of
text classification, for which we could leverage existing multi-domain datasets
varying in complexity, size and label space (multi-class vs. multi-label).

This leads to the following research questions:

RQ 1. When tested in realistic language data distributions on various text
classification tasks, how well do PUQ methods fare in NLP?
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RQ 2. In which settings are PUQ methods most useful, i.e., which failure sources
/ distribution shifts are they most sensitive to?

RQ 3. How can we obtain better PUQ estimates without overrelying on
computationally prohibitive methods, e.g., Deep Ensemble [238]?

RQ 4. How important are certain prior, neural architecture or hyperparameter
influences on the quality of PUQ estimation?

In a later chapter (Chapter 5), we introduce a complex benchmark for generic
DU that additionally tests for robustness to domain, visual and layout shifts,
and explores the novel problem of hallucination and control in natural language
generation (NLG) with LLMs from the perspective of calibrated and selective
DocVQA. The general task formulation involves a natural language question (on
content, aspect, form, visual/layout), an input document, and a set of reference
answers. The model is expected to provide a natural language answer, an answer
confidence and a (binary) abstention decision. Evaluation is done in terms of
answer correctness, calibration and selective prediction. On the one hand, one
expects a model to lower confidence when unsure about the correctness of a
predicted answer. On the other hand, one expects a model to abstain from
answering and refrain from hallucinations on unanswerable questions (which
had been explicitly added in the dataset).

RQ 5. How severe is the problem of hallucination and control in LLMs when
evaluated in a selective, free-form DocVQA task setting?

1.2.2 Realistic and Efficient Document Understanding

The second part of the dissertation focuses on the more applied research questions
of realistic and efficient DU. The overall objective is to make DU technology
more generically applicable (Chapter 5), evaluation more in sync with real-world
requirements (Chapters 4 and 5), and more efficient at modeling the multimodal
and compositional nature of documents (Chapters 5 and 6).

Due to the proximity to business applications and the risks of leaking personal
information, DU research benchmarks have diverged substantially from the
real-world distributions of document data. For instance, DU datasets are often
limited to single-page document images, are from outdated sources (e.g., IIT-
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CDIP [252]), or are restricted to a single domain or a small set of document
types.

We posit that larger, fundamental questions in DU remain unanswered due to a
lack of sufficiently complex datasets and benchmarks with a rich methodology
covering evaluation beyond the independent and identically distributed (i.i.d.)
test set setting. While there exist performant models for DU subtasks such
as OCR, DC, KIE, etc., it is unclear how to move from these specific analysis
and recognition tasks to models that can reason and understand documents. A
truly end-to-end DU solution must handle the complexity and variety of real-
world documents and subtasks, which could be expressed as natural language
questions. Moreover, it should be able to generalize to any question on any
document and reason over multiple pages and modalities.

The following research questions are addressed in Chapters 4 and 5:

RQ 6. How can we iteratively close the gap between research and practice in DU?

RQ 7. How can we design a resource that comprehensively challenges the state-of-
the-art?

RQ 8. Which DU aspects are most challenging for current state-of-the-art LLMs?
How can these be incorporated in a benchmark to allow proper measurements
of future improvements?

However, moving the goalpost beyond a single-page context inevitably requires
us to reconsider the research challenge of efficiency in DU. The rise of LLMs
has enabled a new generation of DU pipelines, which are more flexible and
easier to maintain than separate and specialized subtask modules, but also
more computationally demanding. Importantly, most LLMs are not designed
to handle the multimodality and long context windows of multipage documents,
and are often unaware of the visual and layout semantics of documents.

The research questions for Chapter 6 address the efficiency challenge in DU:

RQ 9. How can we efficiently infuse LLMs with semantic layout awareness for
more focused information extraction?

RQ 10. To what degree can model compression resolve the problem of efficiency
in processing documents?
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1.3 Outline

Figure 1.1. Overview of publications and how they relate to the chapters.

Figure 1.2. Visual Overview of the research questions and how they relate to the
chapters.

After the introductory Chapters 1 and 2, we continue with the publication-based
chapters that form the core of the thesis, which are structured in two parts.

Part I consists of a single chapter, Chapter 3, which presents a benchmarking
study of PUQ methods applied on real-world text classification datasets with
1-D convolutional neural networks and pretrained transformers. It motivates
a novel PUQ method, Deep Ensemble with Concrete Dropout, combining the
benefits of both methods, and showing promise for improving reliability and
robustness in NLP at a lower computational cost. The chapter concludes with
a discussion of the results, including targeted ablation studies, and provides
recommendations for future research.

Part II consists of three chapters, Chapters 4 to 6, which all focus on the more
applied research questions of realistic and efficient DU.
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Chapter 4 reflects on the current state of DU research, and proposes guidelines to
foster document dataset construction efforts. It introduces two novel document
classification datasets, RVL-CDIP_MP and RVL-CDIP-N_MP, as extensions
of the RVL-CDIP dataset [165] with multipage documents. The datasets are
accompanied by a comprehensive experimental analysis, which shows promise
from advancing multipage document representations and inference.

Chapter 5 introduces the multi-faceted DUDE benchmark for assessing
generic DU, that was also hosted as a competition to challenge the DU
community. It describes the complete methodology and design of the dataset,
targeting model innovations that can handle the complexity and variety of
real-world documents and subtasks, and generalize to any documents and any
questions. Next to a discussion of the competition results, it also presents
our own comprehensive benchmarking study of SOTA LLMs with varying the
context length and what modalities are represented.

Chapter 6 investigates how to efficiently obtain more semantic document layout
awareness. We explore what affects the teacher-student knowledge gap in
KD-based model compression methods, and design a downstream task setup
to evaluate the robustness of distilled DLA models on zero-shot layout-aware
DocVQA.

Finally, Chapter 7 concludes the thesis with a summary of the main contributions
(Section 7.1), and a discussion of future research directions. As a logical follow-
up to Chapter 5, we propose in Section 7.2.2.1 how the DUDE dataset could
be extended to become the ‘ultimate’ DU benchmark. The thesis ends with a
hypothetical, informed design of how the research presented would form part of
an end-to-end, fully-fledged IA-DU solution (Section 7.2.2.2).



Chapter 2

Fundamentals

This chapter provides all the necessary background knowledge necessary to
understand the contributions of this thesis.

The key questions covered here are:

i. How to feed a document to an algorithm to perform arbitrary tasks on it?
ii. How to model language, vision, layout or structure?
iii. How does it learn and then operate at inference time?
iv. How does it estimate prediction uncertainty?
v. How to evaluate its performance?
vi. How to integrate it as a useful, end-to-end system in a document workflow?

Section 2.1 explains the basic setting from the perspective of statistical learning
theory [472], which is a mathematical framework for analyzing how algorithms
learn from data with minimal error. Section 2.2 gives a primer on reliability and
robustness, particularly calibration, failure detection and relevant evaluation
metrics. Section 2.3 surveys the DU field, and discusses the state of the art in
DU technology. Finally, Section 2.4 covers Intelligent Automation to illustrate
how solving the challenges posed in this thesis will enable to augment human
intelligence, creativity and productivity in straight-through business processes.

11
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2.1 Statistical Learning

Two popular definitions of Machine Learning (ML) are given below.

Machine Learning is the field of study that gives computers the ability
to learn without being explicitly programmed. [406]

A computer program is said to learn from experience E with respect to
some class of tasks T, and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E. [317]

Following these, different types of learning problems [472] can be discerned, of
which the most common (and the one used throughout our works) is supervised
learning. It defines experience E as a set of input-output pairs for which the
task T is to learn a mapping f from inputs X ∈ X to outputs Y ∈ Y, and the
performance measure P is the risk or expected loss (Equation (2.1)), given a
(0-1) loss function ` : Y × Y → R+.

R(f) = E(X,Y )∼P [`(Y, f(X))] (2.1)

The mapping f(·; θ) : X → Y is typically parameterized by a set of parameters
θ (omitted whenever it is fixed) and a hypothesis class F , which is a set of
possible functions. The objective is to find a function f ∈ F that minimizes the
risk, or even better, the Bayes risk

f∗ = inf
f∈F
R(f), (2.2)

which is the minimum achievable risk over all functions in F . The latter is only
realizable with infinite data or having access to the data-generating distribution
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P(X ,Y). In practice, Equation (2.2) is unknown, and the goal is to find a
function f̂ that minimizes the empirical risk

f̂ = 1
N

N∑
i=1

`(yi, f(xi)), (2.3)

where (xi, yi) are N independently and identically distributed (i.i.d.) samples
drawn from an unknown distribution P on X ×Y . This is known as empirical
risk minimization (ERM), which is a popular approach to supervised learning,
under which three important processes are defined.

Training or model fitting is the process of estimating the parameters θ of a
model, which is done by minimizing a suitable loss function ` over a training
set D = {(xi, yi)}Ni=1 of N i.i.d. samples.

Inference or prediction is the process of estimating the output of a model for
a given input, which is typically done by computing the posterior probability
P (y|x) over the output space Y. Classification output is a discrete label, while
regression output is a continuous value.

Evaluation involves measuring the quality of a model’s predictions, which is
typically done by computing a suitable evaluation metric over a test set Dtest
of i.i.d. samples, which were not used for training.

However, ERM has its caveats concerning generalization to unseen data,
requiring either additional assumptions on the hypothesis class F , which
are known as inductive biases, and/or regularization to penalize the
complexity of the function class F [445]. In neural networks (discussed in
detail Section 2.1.1), the former is controlled by the architecture of the network,
while the latter involves specifying constraints to parameters or adding a
regularization term to the loss function.

f̂ = arg min
f∈F

(
R̂(f) + λΨ(θ)

)
(2.4)

Equation (2.4) defines regularized empirical risk minimization (RERM),
where Ψ(θ) is a regularization term and λ is a hyperparameter that controls the
trade-off between the empirical risk (denoted with R̂) and the regularization
term.

All these concepts will be revisited in the context of neural networks in
Section 2.1.1, where we will also discuss the optimization process of the model
parameters θ, how inference differs in the case of probabilistic models to estimate
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uncertainty (Section 2.2.5), and how regularization affects confidence estimation
and calibration (Section 2.2.4).

2.1.1 Neural Networks

An artificial neural network (NN) is a mathematical approximation inspired
by data processing in the human brain [396]. It can be represented by a
network topology of interconnected neurons that are organized in layers that
successively refine intermediately learned feature representations of the input
[448] that are useful for the task at hand, e.g., classifying an animal by means
of its size, shape and fur, or detecting the sentiment of a review by focusing on
adjectives.

A basic NN building block is a linear layer, which is a linear function of the
input parameters: f(x) = Wx+ b, where the bias term b is a constant vector
shifting the decision boundary away from the origin and the weight matrix
W holds most parameters that rotate the decision boundary in input space.
Activation functions (e.g., tanh, ReLu, sigmoid, softmax, GeLu) are used to
introduce non-linearity in the model, which is required for learning complex
functions.

The first deep learning (DL) network (stacking multiple linear layers) dates
back to 1965 [191], yet the term ‘Deep Learning’ was coined in 1986 [398].
The first successful DL application was a demonstration of digit recognition
in 1998 [244], followed by DL for CV [90, 223] and NLP [76]. The recent
success of DL is attributed to the availability of large datasets, the increase in
computational power, the development of new algorithms and architectures,
and the commercial interest of large companies.

Consider a conventional DL architecture as a composition of parameterized
functions. Each consists of a configuration of layers (e.g., convolution, pooling,
activation function, normalization, embeddings) determining the type of input
transformation (e.g., convolutional, recurrent, attention) with (trainable)
parameters linear/non-linear w.r.t. the input x. Given the type of input,
e.g., language which is naturally discrete-sequential, or vision which presents a
ready continuous-spatial signal, different DL architectures have been established,
which will be discussed in Section 2.1.3.

AK-class classification function with an l-layer NN with d dimensional input x ∈
Rd is shorthand fθ : Rd → RK , with θ = {θj}lj=1 assumed to be optimized, either
partially or fully, using backpropagation and a loss function. More specifically,
it presents a non-convex optimization problem, concerning multiple feasible
regions with multiple locally optimal points within each. With maximum-
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Sigmoid Function Softmax Function

σ(z) = 1
1 + exp−z softmax(z) = exp(z)∑K

k=1 exp(zk)

Table 2.1. Sigmoid and softmax activation functions for binary and multi-class
classification, respectively.

likelihood estimation estimation, the goal is to find the optimal parameters
or weights that minimize the loss function, effectively interpolating the training
data. This process involves traversing the high-dimensional loss landscape.
Upon convergence of model training, the optimized parameters form a solution
in the weight-space, representing a unique mode (specific function fθ̂). However,
when regularization techniques such as weight decay, dropout, or early stopping
are applied, the objective shifts towards maximum-a-posteriori (MAP), to
take into account the prior probability of the parameters. The difference in
parameter estimation forms the basis for several uncertainty estimation methods,
covered in Section 2.2.5.

A prediction is a translation of a model’s output to which a standard decision
rule is applied, e.g., to obtain the top-1/k prediction (Equation (2.5)), or decode
structured output according to a function maximizing total likelihood with
optionally additional diversity criteria.

ŷ = argmax fθ̂(x) (2.5)

Considering standard NNs, the last layer outputs a vector of real-valued logits
z ∈ RK , which in turn are normalized to a probability distribution over K
classes using a sigmoid or softmax function (Table 2.1).

2.1.2 Probabilistic Evaluation

The majority of our works involves supervised learning with NNs, formulated
generically as a probabilistic predictor in Definition 1.

Definition 1. Probabilistic predictor f : X → ∆Y that outputs a conditional
probability distribution P (y′|x) over outputs y′ ∈ Y for an i.i.d. drawn sample
(x,y).

Definition 2 (Probability Simplex). Let ∆Y := {v ∈ R|Y|≥0 : ‖v‖1 = 1} be a
probability simplex of size |Y| − 1 as a geometric representation of a probability
space, where each vertex represents a mutually exclusive label and each point
has an associated probability vector v [368].
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Figure 2.1 illustrates a multi-class classifier, where Y = [K] for K=3 classes.
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Figure 2.1. Scatter plot of a ternary problem (K = 3, N = 100) in the probability
simplex space. Example of overconfident misprediction (above is a Shiba Inu dog) and
correct sharp prediction (clear image of Beagle).

In practice, loss functions are proper scoring rules [330], S : ∆Y×Y → R, that
measure the quality of a probabilistic prediction P (ŷ|x) given the true label y.
The cross-entropy (CE) loss is a popular loss function for classification, while
the mean-squared error (MSE) loss is used for regression. In Section 2.2, we
will discuss the evaluation of probabilistic predictors in more detail, including
the calibration of confidence estimates and the detection of out-of-distribution
samples.

2.1.3 Architectures

Throughout the chapters of the thesis, we have primarily used the following
NN architectures: Convolutional Neural Networks (CNNs), Transformer
Networks . We will briefly introduce the building blocks of these architectures,
with a focus on how they are used in the context of document understanding.

2.1.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [244] are a class of DNNs designed
primarily for visual and grid-spatial data such as images. They are inspired by
the visual cortex of animals, which contains neurons that are sensitive to small
subregions of the visual field, called a receptive field. The receptive fields of
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different neurons partially overlap such that they cover the entire visual field,
growing larger in deeper layers of the visual cortex.

Figure 2.2. Sketch of a CNN architecture. The input is a 2D image, which is iteratively
convolved with a set of learned filters detecting specific input features, e.g., edges,
corners, blobs, to produce feature maps. Feature maps are then downsampled using
a pooling operation.

As illustrated in Figure 2.2, CNNs are composed of multiple convolutional layers,
which hierarchically extract features from the input, followed by pooling and
fully-connected layers to classify the input based on the downsampled features.
A filter K ∈ Rd×d is a rectangular matrix of trainable weights with width and
height d typically smaller than the input x. A convolutional layer applies filters
sliding over the input, with each filter producing a feature map:

F = K ∗ x, (2.6)

where the convolution operation ∗ computes a dot product between filter entries
and the covered portions of the input.

Thanks to the weight sharing property of the convolution operation, CNNs are
able to learn translation invariance, i.e., the ability to recognize an object
regardless of its position in the image. This is particularly useful for object
detection, where the position of the object in the image is unknown.

This architecture was used for document image classification and document
layout analysis (Section 6.3.2). A special version is 1-D CNNs, which we applied
to one-hot encoded text data in text classification benchmarking (Section 3.4.3).

2.1.3.2 Language Neural Networks

The first step to represent language input into a format compatible with NNs is
to convert units of language, words or characters or “tokens” as depending on
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a tokenizer, into numerical vectors. This is done by means of embeddings,
which are typically learned as part of the training process, and are used to
represent the meaning of words in a continuous vector space. There have been
multiple generations of word embeddings, starting with one-hot vectors that
represent each word by a vector of zeros with a single one at its vocabulary index,
which depends highly on the tokenizer used and does not capture semantic
relationships between words. Alternatives are frequency-based embeddings,
such as TF-IDF vectors, which represent each word by its frequency in the
corpus, weighted by its inverse frequency in the corpus, capturing some lexical
semantics, but not the context in which the word appears. The next generation
areWord2Vec embeddings that are trained to predict the context of a word, i.e.,
the words that appear before and after it in a sentence. FastText embeddings
improve this by considering a character n-gram context, i.e., a sequence of n
characters. The current generation are contextual word embeddings that
are trained to predict the context of a word, taking into account the surrounding
context and learning the sense of a word based on its context, e.g., ‘bank’ as
a river bank vs. a financial institution in ‘Feliz sits at the bank of the river
Nete’. Another important innovation is subword tokenization to deal with
the out-of-vocabulary (OOV) problem, which is particularly relevant for
morphologically rich languages, such as Dutch, where word meaning can be
inferred from its subwords. A clever extension is byte pair encoding (BPE)
[412], which is a data compression algorithm that iteratively replaces the most
frequent pair of bytes in a sequence with a single, unused byte, until a predefined
vocabulary size is reached. This is particularly useful for multilingual models,
where the vocabulary size would otherwise be too large to fit in memory.

The first embedding layer is typically a lookup table, which maps each word
to a unique index in a vocabulary, and each index to a vector of real numbers.
The embedding layer is typically followed by a recurrent, convolutional or
attention layer, which is used to capture the sequential nature of language.
Recurrent Neural Networks (RNNs) and recurrent architectures extended
to model long-range dependencies such as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) networks were the dominant architectures
for sequence modeling in NLP, yet they have been superseded by Transformers
in recent years.

2.1.3.3 Transformer Network

A Transformer [473] is a sequence-to-sequence model that uses an attention
mechanism to capture long-range dependencies in the input sequence, benefiting
from increased parallelization. Traditionally, it consists of an encoder and a
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decoder, each composed of multiple layers of self-attention and feed-forward
layers.

Attention is a mechanism that allows for soft selection of relevant information
from a set of candidates, e.g., tokens in a document, based on a query, e.g.,
a token in the document. The scaled dot-product attention is defined
for a sequence of length n as follows: Att(Q,K, V ) =

∑n
i=1 αiVi. It utilizes

three learnable weight matrices, each multiplied with all token embeddings in a
sequence to build queries Q ∈ Rn×dq , keys K ∈ Rn×dq , and values V ∈ Rn×dv .
The output of the attention mechanism is a weighted sum of the unnormalized
values, where each attention weight of the i-th key is computed by normalizing
the dot product between the query and key vectors αi = exp(QT

i Ki)∑n

j=1
exp(QT

J
Kj) . For

training stability, the dot product is typically scaled by the square root of the
dimensionality of the query and key vectors. This is followed by a feed-forward
layer to capture non-linear relationships between the tokens in the sequence.

There exist different forms of attention, depending on the type of relationship
that is captured. Self-attention computes the attention of each token w.r.t.
all other tokens in the sequence, which changes the representation of each token
based on the other tokens in the sequence. Multi-head attention is a set
of h attention layers, which every Transformer uses to concurrently capture
different types of relationships, concatenated together after the parallelized
processing. Cross-attention computes the attention of each token in one
sequence w.r.t. all tokens in another sequence, which is used in encoder-decoder
Transformer architectures for e.g., summarization and machine translation.
Specific to decoder layers, masked attention is used to prevent the decoder
from attending to future tokens in the sequence by masking the upper triangle
of the attention matrix calculation.

Quadratic complexity

Figure 2.3. Illustration of the main attention mechanisms in a Transformer.

A major downside to Transformers is the quadratic complexity of the attention
mechanism (Figure 2.3), which makes them computationally inefficient for long



20 FUNDAMENTALS

sequences. This has been addressed by a wealth of techniques [120], such as
sparsifing attention, targeting recurrence, downsampling, random or low-rank
approximations.

Position Embeddings are indispensable for Transformers to be able to process
sequences, as they do not have any notion of order or position of tokens in
a sequence. The most common type of position embedding is a sinusoidal
embedding with a fixed frequency and phase, f(x) = sin(ωx+φ), where ω is the
frequency and φ is the phase which are learned as part of the training process,
and they are typically shared across all tokens in the sequence. Integrating
position information into Transformers can be achieved in different ways, which
[105, Table 1] gives an overview for.

Transformers have gradually taken over as an end-to-end architecture for both
NLP and CV tasks, albeit adoption in CV has been slower, due to the lack
of spatial invariance in the original Transformer architecture. This has been
addressed by recent works, such as Vision Transformer (ViT) [101], which uses
a patch-based input representation with position embeddings.

A large language model (LLM) consists of a stack of Transformers that is
pretrained on a large corpus of text, typically using a self-supervised learning
objective, such as predicting the next token in a sequence. The goal of LLMs
is to learn a general-purpose language representation that can be fine-tuned
to perform well on a wide range of downstream tasks. LLMs have disrupted
NLP in recent years, as they have achieved SOTA performance on a wide
range of tasks thanks to pretraining on large amounts of data. The most
popular LLMs are BERT [95], RoBERTa [287], ELECTRA [73], T5 [383],
GPT-3 [52], Llama-2 [452], and Mistral [199]. Next to challenges specific to
modeling document inputs, explained in Section 2.3.4, open challenges for
LLMs include: (i) structured output generation, (ii) domain-specific knowledge
injection (e.g., does retrieval-augmented generation (RAG) suffice? [253, 347]),
(iii) multimodality.

Vision-language models (VLM) are a recent development in multimodal
learning, which combine the power of LLMs with vision encoders to perform
tasks that require understanding both visual and textual information. The most
popular VLMs are CLIP [381], UNITER [70], FLAVA [423] and GPT-4 [344].

In every chapter of this dissertation we have used Transformers, either as part
of a foundation model for DU tasks (Chapters 4 to 6) or to contrast with 1-D
CNNs in text classification (Chapter 3). Note that [265] share our concerns that
NLP needs a new ‘playground’ with more realistic tasks and benchmarks, which
extend beyond sentence-level contexts to more complex document-level tasks.
Alternative sub-quadratic architectures have started addressing Transformer’s
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computational inefficiency on long sequences, e.g., Mamba [152] and Longnet
[99]. Time will tell if these will be able to compete with the Transformer’s
dominance in foundation models.

2.2 Reliability and Robustness

Chapter 3 contains a lot of relevant content on the basic relation between
uncertainty quantification, calibration, and distributional generalization or
detection tasks. Here, we will focus on the more general concepts of reliability
and robustness, and how they relate to concepts used throughout the rest of
the thesis. Next, we discuss the need for confidence estimation and appropriate
evaluation metrics, followed by short summaries of the main research trends in
calibration and uncertainty quantification.

Emerging guidance and regulations [2, 3, 475] place increasing importance on
the reliability and robustness of ML systems, particularly once they are used
in the public sphere or in safety-critical applications. In ML, reliability and
robustness are often used interchangeably [78, 420, 455], yet they are distinct
concepts, and it is important to understand the difference between them. This
thesis uses the following definitions of reliability and robustness, adapted from
systems engineering literature [395]:

Definition 3 [Reliability]. Reliability is the ability of a system to consistently
perform its intended function in a specific, known environment for a specific
period of time, with a specific level of expected accuracy [395]. Closer to the ML
context, this entails all evaluation under the i.i.d. assumption, allowing for some
benign shifts of the distribution, including predictive performance evaluation
with task-dependent metrics (accuracy, F1, perplexity, etc.), calibration, selective
prediction, uncertainty estimation, etc.

Reliability requires to clearly specify the role an ML component plays in a
larger system, and to define the expected behavior of the system as a function
of alignment with the training data distribution. This is particularly important
in the context of black-box models, where the inner workings of the model are
not transparent to the user. In this case, the user needs to be aware of the
model’s limitations, e.g., model misspecification, lack of training data, and the
model needs to be able to communicate its own uncertainty to the user. This is
the focus of Chapter 3.

Definition 4 [Robustness]. Robustness is the ability of a system to maintain
its intended function despite a wide range of disturbances, with a minimal
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degradation of performance [395]. Such disturbances can take the form of
adversarial attacks, distributional shifts, or other types of noise. In the ML
context, this entails all evaluation violating the i.i.d. assumption, including
adversarial and label noise robustness, out-of-distribution detection, domain
generalization, extrapolation, etc.

Robustness is more involved with the application scope in which a model can
perform well, assuming that the model can maintain some degree of its prediction
capacity on non-i.i.d. data which might be unknown at training time. Detecting
when the model is operating outside of its intended scope is an important part
of robustness to prevent failure propagation to downstream systems.

Resilience is another component of theR3: reliability, robustness, resilience
concept in systems engineering, yet it is not a focus of this thesis, nor is it
a relevant qualifier of the ML model in isolation, as it is more related to the
system as a whole. Resilient systems are able to recover from disturbances, even
those caused by model misspecification, e.g., by adapting to new environments
and unexpected inputs from unknown distributions or by self-healing.

2.2.1 Generalization and Adaptation

To complete the R3 picture, we cannot overlook the generalization-
adaptation spectrum, which has been less explored in our works, yet it is an
important part of current practices in ML.

Definition 5 [Generalization-adaptation]. Generalization is the ability of
a system to perform its intended function in a wide range of environments,
including those not known at design time [395]. Each environment is defined by
a data distribution over a domain and a task, and generalization is the ability
of a model to perform well on new data drawn from the same distribution.
Adaptation is the ability of a system to perform its intended function in a specific,
known environment, despite changes in the system itself or its environment
[395]. This entails the ability of a model to perform well on new data drawn
from a different distribution, which is known at design time.
Different settings of generalization-adaptation are: in-distribution (same
domain and task), domain generalization (same task, different domain), task
generalization (same domain, different task), out-of-distribution (different
domain or task). If the model has access to limited samples for training
on the new distribution, it is referred to as few-shot learning or no samples at
all, zero-shot learning; if it is able to adapt to new distributions over time, or
accumulate knowledge over different tasks without retraining from scratch [87],
it is referred to as continual learning or incremental learning.
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Many of these settings are referred to in business as out-of-the-box, self-learning,
yet without any formal definitions given. Domain and task generalization are
major selling points of pretrained LLMs, which are able to perform well on a
wide range of tasks and domains. In the case of very different distributions, e.g.,
a different task/expected output or an additional domain/input modality, it is
often necessary to fine-tune the model on a small amount of data from the new
distribution, which is known as transfer learning. Specific to LLMs, instruction
tuning is a form of transfer learning, where samples from a new distribution are
appended with natural language instructions [69, 532]. This approach has been
used in Chapter 5 to adapt pretrained LLMs to the task of DocVQA, in an
effort to reduce the amount of annotated data required to generalize to unseen
domains and questions.

2.2.2 Confidence Estimation

A quintessential component of reliability and robustness requires a model to
estimate its own uncertainty, or inversely to translate model outputs into
probabilities or ‘confidence’ (Definition 6).

Definition 6 [Confidence Scoring Function]. Any function g : X → R
whose continuous output aims to separate a model’s failures from correct
predictions can be interpreted as a confidence scoring function (CSF) [193].
Note that while it is preferable to have the output domain of g ∈ [0, 1] for easier
thresholding, this is not a strict requirement.

Circling back on the question of why one needs a CSF, there are multiple reasons:
i) ML models are continually improving, yet 0 test error is an illusion, even a
toy dataset (MNIST) is not perfectly separable; ii) once a model is deployed,
performance deterioration is expected due to i.i.d. assumptions breaking; iii)
generative models are prone to hallucinations [198], requiring some control
mechanisms and guardrails to guide them.

Below, we present some common CSFs used in practice [114, 172, 194, 539],
where for convenience the subscript is reused to denote the k-th element of the
output vector g(x) = gk(x).

I. Maximum softmax probability (MSP): g(x) = maxy′∈Y fy′(x)

II. Maximum logit: g(x) = maxy′∈Y zy′(x), with logits z ∈ RK

III. Negative entropy: g(x) = −
∑
y′∈Y fy′(x) log fy′(x)

IV. Margin: g(x) = maxy′∈Y fy′(x)−maxy′′∈Y\y′ fy′′(x)
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V. Distance-based measures

• kNN distance: A 1D outlier score derived from the average distance
of the feature representation of x to its k nearest neighbors in the
training distribution

• Mahalanobis distance [390]: The minimum distance of the feature
map (e.g., penultimate layer activations) of a test input to class-
conditional Gaussian distributions of the training data.

VI. Bayesian uncertainty estimation

Chapter 3 used MSP and negative entropy as CSFs, next to various PUQ
methods for Bayesian uncertainty estimation. Other chapters used MSP as it
is the most common CSF in practice, requiring only logits as input. From the
use of CSFs also follows the need to evaluate their statistical quality next to
task-specific predictive performance metrics, which is discussed next.

2.2.3 Evaluation Metrics

In an ideal world, the evaluation metric of interest would be the same as the loss
function used for training, yet this is rarely the case in practice, as the gradient-
based optimization process requires a continuously differentiable function, while
the metric of interest is often non-differentiable, e.g., accuracy vs. cross-entropy
in classification.

Throughout our works, we have used (or extended) multiple predictive
performance, calibration, and robustness metrics, of which the most interesting
are respectively outlined.

Average Normalized Levenshtein Similarity (ANLS) is a metric intro-
duced in [39] for the evaluation of VQA, which was then extended [449] to
support lists and be invariant to the order of provided answers. We adapted the
underlying Levenshtein Distance (LD) metric [251] to support not-answerable
questions, NA(G) = I[type(G) = not-answerable ] (see Equation (2.7)).
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Consider for simplicity, the evaluation of a single non-list ground truth answer
G and prediction P̂ , each with string lengths |G| and |P̂ |, respectively.

LD(G, P̂ ) =



1 if NA(G) ∧ |P̂ | > 0,
0 if NA(G) ∧ |P̂ | = 0,
|G| if |P̂ | = 0,
LD(tail(G), tail(P̂ )) if G[0] = P̂ [0],

1 + min


LD(tail(G), P̂ ) if G[0] 6= P̂ [0] (deletion),
LD(G, tail(P̂ )) if G[0] 6= P̂ [0] (insertion),
LD(tail(G), tail(P̂ )) if G[0] 6= P̂ [0] (substitution)

(2.7)

Each of the conditions is tested in turn, and the first one that is true is executed.
The normalized similarity metric is then defined as

NLS(G, P̂ ) = 1− LD(G, P̂ )
max(1, |G|, |P̂ |)

.

Given multiple ground truth answer variants G = {a1, a2, ...} and a predicted
answer for P̂Qi

for each question Q in the test set of size N , we define the
complete metric as follows:

ANLS = 1
N

N∑
i=1

(
max
a∈Gi

s
(
a, P̂Qi

))
(2.8)

s
(
a, P̂Qi

)
=

 NLS
(
a, P̂Qi

)
if NLS

(
a, P̂Qi

)
> τ

0 if NLS
(
a, P̂Qi

)
< τ

, (2.9)

where we follow prior literature [39, 449] in setting the threshold τ = 0.5.

In the case of a list-type question, Hungarian matching is performed following
[449] according to NLS between each ground truth answer part and each
prediction answer part.

Proper scoring rules [330] are used for generic evaluation of predictive
performance, which calculate scoring at the instance-level while measuring both
the quality of the predictive function and predicted probability distribution (as
they are not compatible with an arbitrary CSF):

• Negative Log Likelihood (NLL) [378] is both a popular loss function
(cross-entropy) and scoring rule which only penalizes (wrong) log
probabilities qi given to the true class, with I an indicator function defining
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the true class. This measure more heavily penalizes sharp probabilities,
which are close to the wrong edge or class by over/under-confidence.

`NLL(f) = − 1
N

N∑
i=1

K∑
k=1

I [yi = k] · log (fk(xi)) (2.10)

• Brier Score [50] is a scoring rule that measures the accuracy of a
probabilistic classifier and is related to the mean-squared error (MSE) loss
function. Brier score is more commonly used in industrial practice since it
is an λ2 metric (score between 0 and 1), yet it penalizes tail probabilities
less severely than NLL.

`BS(f) = 1
N

N∑
i=1

K∑
k=1

(I (yi = k)− fk(xi))2 (2.11)

All metrics following require a CSF g(x) to be defined, and can pertain to
specific evaluation settings [389] tested in Section 3.4.5.

Expected Calibration Error (ECE) [156, 332] is a default metric to evaluate
top-1 prediction miscalibration. A calibration estimator (Definition 7) measures
the Lp norm difference between a model’s posterior and the true likelihood of
being correct.

Definition 7 (Lp Calibration Error). [231, 463]
The Lp calibration error of f : X → ∆Y over the joint distribution (X × Y )
with the Lp norm p ∈ [1,∞) is given by:

CEp(f)p = E(X,Y )
[
‖E[Y | f(X)]− f(X)‖pp

]
(2.12)

The popular ECE metric [332] with condition I[Y = ŷ] is a special case of the
above with p = 1, where the expectation is approximated using a histogram.
MaxCE defines the worst-case risk version with p =∞, effectively reporting on
the bin with the highest error. As part of Chapter 5, we contributed a novel
empirical estimator of top-1 calibration for the task of VQA, where the exact
accuracy condition I[Y = ŷ] in ECEis replaced by I[ANLS(y, ŷ) > τ ]. Prior
work [329] used a similar strategy of thresholding continuous quality scores to
be able to estimate ECE.

In practice, ECE is implemented as a histogram binning estimator that
discretizes predicted probabilities into ranges of possible values for which
conditional expectation can be estimated. Concretely, the probability space
is partitioned into B bins bi with i ∈ {1, ..., B}, where for each bin bi the gap
between observed accuracy and bin confidence P̄b is measured, with a final
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average weighted by the number of samples per bin |bi|.

ECE =
B∑
i=1

|bi|
N

∣∣acc(bi)− P̄b (bi)
∣∣ (2.13)

To minimize the drawbacks inherited from histogram binning, as suggested
by the literature [231, 342, 393, 463], we have applied an equal-mass binning
scheme with 100 bins (close to

√
N). While plenty of histogram-based ECE

estimator implementations exist, many design hyperparameters are not reported
or exposed:

I. `p norm
II. The number of bins (beyond the unfounded default of |B| = 15)
III. Different binning schemes (equal-range, equal-mass)
IV. Binning range to define the operating zone
V. Proxy used as bin accuracy (lower-e.g., center, upper-edge)

We upstreamed 1 a generic implementation of binning-based ECE as part of
the ICDAR 2023 DUDE competition (Chapter 5).

Alternative formulations have been developed for multi-class [342, 370, 492]
and multi-label calibration [493, 520]. Measurements of “strong” calibration,
over the full predicted vector instead of the winning class, are reported less in
practice. Possible reasons are that they render class-wise scorings, either based
on adaptive thresholds or require estimation of kernel-based calibration error
to derive hypothesis tests. While we are mindful of alternatives (revisited in
Section 2.2.4), we have found that the simpler “weak” calibration measured by
ECE meets the practical requirements for most of our benchmarking.

Area-Under-Risk-Coverage-Curve (AURC) [138, 193] measures the pos-
sible trade-offs between coverage (proportion of test set%) and risk (error %
under given coverage). The metric explicitly assesses i.i.d. failure detection
performance as desired for safe deployment. It has advantages as a primary
evaluation metric given that it is effective both when underlying prediction
models are the same or different (as opposed to AUROC or AUPR). Its most
general form (without any curve approximation), with a task-specific evaluation
metric ` and CSF g, is defined as:

AURC(f, g) = Ex∼P(X)

[
E(x̃,ỹ)∼PXY

[`([f(x̃)], ỹ)I[g(x̃) > g(x)]]
Ex̃∼PX

[I[g(x̃) > g(x)]]

]
(2.14)

This captures the intuition that the CSF g should be able to rank instances by
their risk, and that the risk should be low for instances with high confidence.

1https://huggingface.co/spaces/jordyvl/ece

https://huggingface.co/spaces/jordyvl/ece
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The standard curve metric can be obtained by sorting all CSF estimates and
evaluating risk ( FP

TP+FP ) and coverage ( TP+FP
TP+FP+FN+TN ) for each threshold t (P

if above threshold) from high to low, together with their respective correctness (T
if correct). This is normally based on exact match, yet for generative evaluation
in Section 5.3.5, we have applied ANLS thresholding instead. Formulated
this way, the best possible AURC is constrained by the model’s test error
(1-ANLS) and the number of test instances. AURC might be more sensible for
evaluating in a high-accuracy regime (e.g., 95% accuracy), where risk can be
better controlled and error tolerance is an apriori system-level decision [115].
This metric was used in every chapter of Part II.

For the evaluation under distribution shift in Chapter 3, we have used binary
classification metrics following [172], Area Under the Receiver Operating
Characteristic Curve (AUROC) and Area Under the Precision-Recall
Curve (AUPR), which are threshold-independent measures that summarize
detection statistics of positive (out-of-distribution) versus negative (in-
distribution) instances. In this setting, AUROC corresponds to the probability
that a randomly chosen out-of-distribution sample is assigned a higher confidence
score than a randomly chosen in-distribution sample. AUPR is more informative
under class imbalance.

2.2.4 Calibration

The study of calibration originated in the meteorology and statistics literature,
primarily in the context of proper loss functions [330] for evaluating
probabilistic forecasts. Calibration promises i) interpretability, ii) system
integration, iii) active learning, and iv) improved accuracy. A calibrated model,
as defined in Definition 8, can be interpreted as a probabilistic model, which can
be integrated into a larger system, and can guide active learning with potentially
fewer samples. Research into calibration regained popularity after repeated
empirical observations of overconfidence in DNNs [156, 339].
Definition 8 (Perfect calibration). [86, 88, 520] Calibration is a property of
an empirical predictor f , which states that on finite-sample data it converges
to a solution where the confidence scoring function reflects the probability ρ of
being correct. Perfect calibration, CE(f) = 0, is satisfied iff:

P(Y = Ŷ | f(X) = ρ) = ρ, ∀ρ ∈ [0, 1] (2.15)

Below, we characterize calibration research in two directions: (A) CSF evaluation
with both theoretical guarantees and practical estimation methodologies

• Estimators for calibration notions beyond top-1 [229, 231, 342, 463]
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• Theoretical frameworks to generalize over existing metrics and design
novel metrics [43, 231, 492, 493]

• Specialize towards a task such as multi-class classification [463], regression
[228, 428], or structured prediction [227]

• Alternative error estimation procedures, based on histogram regression
[156, 331, 332, 340, 343], kernels [230, 370, 492, 493] or splines [159]

(B) Calibration methods for improving the reliability of a model by adapting
the CSF or inducing calibration during training of f :

• Learn a post-hoc forecaster F : f(X)→ [0, 1] on top of f (overview: [298])

• Modify the training procedure with regularization (overview: [277, 370])

Due to its importance in practice, we will provide more detail on train-time
calibration methods. It has been shown for a broad class of loss functions
that risk minimization leads to Fisher consistent, Bayes optimal classifiers in
the asymptotic limit [25, 495]. These can be shown to decompose into a sum
of multiple metrics including both accuracy and calibration error [144, 177].
However, there is no –finite data, nor asymptotic– guarantee that classifiers
trained with proper loss functions containing an explicit calibration term
will eventually be well-calibrated. In practice, being entangled with other
optimization terms often leads to sub-optimal calibration. For this reason,
recent studies [12, 230, 492] have derived trainable estimators of calibration
to have a better handle (γ > 0) on penalizing miscalibration, i.e., by jointly
optimizing risk (R(f) = EX,Y [` (Y, f(X))]) and parameterized calibration error
(CE) as in Equation (2.16).

f̂ = arg min
f∈F

(R(f) + γ CE(f)) (2.16)

Many of these methods are implicitly or explicitly maximizing entropy of
predictions or entropy relative to another probability distribution, e.g., Entropy
Regularization [361], Label Smoothing (LS) [327], Focal Loss [324], Margin-
based LS [277], next to more direct (differentiable), kernel-based calibration
error estimation [211, 230, 370, 492, 493, 526]. We had expected community
contribution on the DUDE competition (Chapter 5) to take advantage of this
wealth of calibration methods, yet the majority of submissions used uncalibrated
models with MSP, requiring more education on the importance of calibration
in practice.
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For the sake of completeness, there exist different notions of calibration, differing
in the subset of predictions considered over ∆Y [463]:

I. top-1 [156]
II. top-r [159]
III. canonical calibration [51]

Formally, a classifier f is said to be canonically calibrated iff,
P(Y = yk | f(X) = ρ) = ρk ∀k ∈ [K] ∧ ∀ρ ∈ [0, 1]K where K = |Y|. (2.17)

However, the most strict notion of calibration becomes infeasible to compute
once the output space cardinality exceeds a certain size [157].

For discrete target spaces with a large number of classes, there is plenty interest
in knowing that a model is calibrated on less likely predictions as well. Some
relaxed notions of calibration have been proposed, which are more feasible
to compute and can be used to compare models on a more equal footing.
These include: top-label [157], top-r [159], within-top-r [159], marginal
[229, 231, 342, 492].

2.2.5 Predictive Uncertainty Quantification

Bayes’ theorem [26] is a fundamental result in probability theory, which
provides a principled way to update beliefs about an event given new evidence.
Bayesian Deep Learning (BDL) methods build on these solid mathematical
foundations and promise reliable predictive uncertainty quantification (PUQ)
[124, 136, 140, 238, 301, 325, 326, 464, 466, 496].

The Bayesian approach consists of casting learning and prediction as an
inference task about hypotheses (uncertain quantities, with θ representing
all BNN parameters: weights w, biases b, and model structure) from training
data (measurable quantities, D = {(xi, yi)}Ni=1 = (X,Y )).

Bayesian Neural Networks (BNN) are in theory able to avoid the pitfalls
of stochastic non-convex optimization on non-linear tunable functions with
many high-dimensional parameters [300]. More specifically, BNNs can capture
the uncertainty in the NN parameters by learning a distribution over them,
rather than a single point estimate. This offers advantages in terms of data
efficiency, avoiding overfitting thanks to regularization from parameter priors,
model complexity control, and robustness to noise due to the probabilistic
nature. However, they come with their own challenges such as the increased
computational cost of learning and inference, the difficulty of specifying
appropriate weight or function priors, and the need for specialized training
algorithms or architectural extensions.
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For a fixed model m, the analytically intractable Bayesian posterior distribution
of the parameters θ is given by Bayes’ rule:

P (θ | D) = P (D | θ)P (θ | m)
P (D | m)

P (D | θ) likelihood of θ (in model m)

P (θ) prior probability of θ

P (θ | D) posterior of θ given data D

(2.18)

The denominator P (D|m) is intractable, since it requires integrating over all
possible parameter values weighted by their probabilities. This is known as
the inference problem, which is the main challenge in BDL, as the posterior
distribution is required to compute the predictive distribution for any new input
(Equation (3.1) further explains this).

In practice, BNNs are often implemented as Variational Inference (VI)
methods, which approximate the high-dimensional posterior distribution with a
tractable distribution family, such as a Gaussian distribution [46]. Let p(θ | D)
be the intractable posterior distribution of parameters θ given observed data D,
which will be approximated with a simpler, conjugate distribution q(θ|D;φ),
parameterized by φ (e.g., mean and variance).

The key idea consists of finding the optimal variational parameters φ∗ that
minimize the Kullback–Leibler (KL) divergence between the approximating
distribution q(θ|D;φ) and the replaced true posterior p(θ | D). This is achieved
by maximizing the evidence lower bound (ELBO), given by:

ELBO(φ) = Eq(θ|D;φ)[log p(D|θ)]−KL[q(θ|D;φ)||p(θ)] (2.19)

=
∫
q(θ|D;φ) log p(D|θ)p(θ)

q(θ|D;φ) dθ (2.20)

=
∫
q(θ|D;φ) log p(D|θ)dθ −

∫
q(θ|D;φ) log q(θ|D;φ)

p(θ) dθ, (2.21)

where the first term Equation (2.21) represents the expected likelihood of the
data given the parameters, and the second term quantifies the dissimilarity
between the variational distribution and the prior distribution over the
parameters. Maximizing the ELBO with φ is equivalent to minimizing the KL
divergence between q(θ|D;φ) and p(θ|D), thereby providing a lower bound on the
log marginal likelihood log p(D) ≥ ELBO(φ), after the parameters θ have been
integrated out. By optimizing the variational parameters φ, we simultaneously
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fit the model to the data well and ensure that the approximate posterior is
encouraged to be as close as possible to the true posterior distribution.

Even a non-Bayesian, classic NN can be interpreted in this framework as an
approximate, degenerate posterior distribution, i.e., a Dirac delta function
centered on the MAP estimate of the parameters, q(θ|D;φ) = δ(θ − θ̂MAP).
More PUQ methods based on different posterior approximations are discussed
in detail in Chapter 3, with additional updates on the state-of-the-art.

2.2.6 Failure Prediction

Based on the principle of selective prediction [138, 139], failure prediction is
the task of predicting whether a model will fail on a given input. In every chapter
following Chapter 3, this topic is addressed in the context of the respective
task. Since it is an important topic in the context of IA-DU that is generating
increasing interest [81, 114, 127, 193, 391], it warrants a brief overview of
how it provides a unified perspective. We refer the reader to [171, 536] for a
comprehensive survey.

Failure prediction subsumes many related tasks in the sense that it requires
a failure source to be defined to form a binary classification task. The failure
source can be i.i.d. mispredictions, covariate shifts (e.g., input corruptions,
concept drift, domain shift), a new class, domain, modality, task, or concept.
The goal of failure prediction is to predict these failures before they occur,
allowing for more reliable and robust ML systems.

First, note that calibration does not imply failure prediction, as a calibrated
model w.r.t. i.i.d. data can still be overconfident on OOD inputs [549]. The
example in Example 2.2.1 sketches the independent requirements of calibration
and confidence ranking.
Example 2.2.1. Classifier A scores 90% accuracy on the test set, with a CSF
using the entire range [0, 1]. Classifier B scores 92% accuracy on the test set,
but the CSF always reports 0.92 for any input. Which classifier is preferred in
a real-world setting?

• Classifier A is calibrated, but it is not possible to know whether it will
fail on a given input.

• Classifier B might be less calibrated, but the CSF allows separability to
predict failure on a given input.

Specific to OOD failure prediction, [527] provides a comprehensive categorization
of failure tasks and methods.
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2.3 Document Understanding

This Section focuses on the history and definition of DU as a field of AI.

Like all subfields of AI, DU has been evolving rapidly, and the definition of a
document has been changing accordingly. We identify three main stages in the
evolution of the field, dependent on a) the type of learning, b) the unit of study,
and c) the modality of the input.

Regarding a), it has followed the natural evolution of rule-based systems, to
learning-based systems, to deep learning systems to build representations of
documents. Regarding b), the field has evolved from region-based analysis, to
page-level analysis, and now moving to document-level analysis, as we have
advocated in our research (Chapters 4 and 5). Regarding c), the field was
originally dominated by OCR, particularly CV, then by KIE, emphasizing NLP,
and now by both CV and NLP, with more attention given to multimodality and
generative models by which new tasks can be approached, e.g., DocEdit [311].

Below, we expound on the evolution of the field through the lens of each
modality, and the tasks that are typically associated with it. We also provide
an overview of the most popular datasets and models in each task/modality.

The term Document Understanding (DU) is used in a variety of contexts
(historical, research, commercial), and its definition deserves some attention. A
seminal reference [430] dates back to 1992, which defines DU as ‘the study of all
processes involved in taking a document through various representations’: from
a physical object to a digital image, from an image to a symbolic description,
and from a symbolic description to a high-level semantic representation. At the
time, the field was dominated by Optical Character Recognition (OCR),
particularly CV, and the definition was focused on the physical-to-digital
conversion of documents, excluding born-digital documents.

Furthermore, the subterm document is used in the context of NLP (in
particular in summarization) to denote a textually-rich document: a sequence of
words exceeding a sentence or paragraph or a single unit in a corpus. However, in
DU it denotes a visually-rich document (VRD), which can be a combination
of text, images, tables, and other elements. There is no universally established
definition of a document [53], and it is used interchangeably with the term
page, which is a physical, symbolic unit. In Chapter 4, we come back to this
definition, addressing the misalignment of research with how documents occur
in practice.

Over time, the quality of OCR has improved, and the focus of the field has shifted
from OCR to document image classification (DIC) and key information
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Figure 2.4. A simple illustration of common DU tasks on an example document.
‘’

extraction (KIE), which are more application-directed recognition tasks.
Arguably, most businesses are interested in the unstructured information
contained in documents, rather than the documents themselves. On the
commercial side, the combination of these tasks is often referred to as
Intelligent Document Processing (IDP), albeit ‘understanding’ has been
similarly marketed by e.g., UIPath (originally an RPA company, now looking
at AI as the next frontier of automation). The scientific community has been
more careful in using the denomination ‘understanding’ [29], with the DUE
benchmark [47] defining it, on the one hand, as an end-to-end process involving
a subset of human cognitive skills, and on the other hand, enumeratively with
several well-defined problems (OCR, KIE, VQA as defined in Section 2.3.1).

In our research, we have extended DU to denote ‘the ability to holistically
consume textual and visual elements structured according to rich semantic
layouts, and reason over compositional information extracted from a VRD to
generate meaningful insights or actions.’. There is no specific notion of tasks,
but rather an emphasis on the end-to-end process leveraging all modalities
intrinsic to documents, where a generic DU model is expected to generalize
to any task on any document from any domain. This stands in shrill contrast
to only DIC and KIE, where local context generalization (key-value pairs) is
rewarded, whereas DU as defined here aims to generalize beyond the local
context of a document.
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2.3.1 Task Definitions

For thorough understanding, each task will be defined in terms of the following
components: input, output, model, and evaluation. Most tasks use a single
document page as input (for both legacy and computational reasons), and the
output depends on the task.

Formally, a page p consists of an image v ∈ RC×H×W (number of channels,
height, and width, respectively) with T word tokens u = {wt}Tt=1, where wt
maps to (sub)words in a vocabulary V , organized according to a layout structure
s =

{(
x1
t , y

1
t , x

2
t , y

2
t

)}T
t=1, typically referred to as token bounding boxes (top-left

to bottom-right corner), coming from OCR or available from a born-digital
document. Standardized notation for document inputs beyond a single page
has been established in Chapter 4 [470].

Optical Character Recognition (OCR) is the task of converting a document
image to a sequence of characters. The input is a document image, and the
output is a sequence of characters. The output space Y is the set of all possible
characters (e.g., a, b, c, ..., A, B, C, ...), typically restricted to a subset of
characters based on the document language and orthography. The quality is
evaluated with a metric such as the word error rate (WER) or the character
error rate (CER).

Document Classification (DC) is the task of assigning a document to a
predefined class. The input is a document image, and the output is a class
label. The output space Y is the set of all document classes (e.g., invoice, email,
form, advertisement). Standard metrics are accuracy and F1 score (if class
imbalance).

Key Information Extraction (KIE) is the task of extracting key information
from a document. The input is a document image, and the output is a set
of key-value pairs. The output space Y is the set of all key-value pairs (e.g.,
date: 2024-01-01, total: 1000.00, ...), where keys are pre-defined as part of a
format relevant to the document class in scope. In practice, it is implemented
as sequence labeling with y = {y1, y2, ..., yT }, where yt ∈ Y is a label from a
IOB,IOBES-encoded labelset Y (B-DATE, I-DATE, ..., O). Extraction quality
is evaluated with the sequence F1 score to account for the imbalance with the
‘O’ token.

Document Visual Question Answering (DocVQA) is the task of answering
a question about a document. The input is a document image and a question,
and the output is an answer. Depending on the type of question, the output
space changes. Extractive questions (ExQA) require a subspan of the document’s
text as answer, y = (ystart, yend) with ystart ≤ yend and ystart, yend ∈ {1, ..., T}.
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Abstractive questions (AbsQA) require a sequence of tokens as answer, y =
{y1, y2, ..., yT ′} with yt ∈ V. The latter is more complex to evaluate, yet more
interesting to test ’understanding’ than restricting evaluation to answer spans,
which is why we introduced AbsQA as part of Chapter 5. Orthogonal to the
previous two types, DUDE introduces list questions with multiple or multi-span
(ExQA) answers. Predicted answers are evaluated using ANLS, with multiple
extensions defined in Section 2.2.3.

Document Layout Analysis (DLA) is the task of analyzing the layout of a
document in terms of logical layout elements (e.g., text blocks, headers, figures,
figure, plots, tables, text). The input is a document image, and the output is
a set of bounding boxes and their respective labels. The output space Y is
the set of all possible bounding boxes and labels. More formally, it outputs
a set of tuples, where each tuple (bj , cj) represents one of J detected logical
layout elements. For each, bj denotes the bounding box for the j-th detected
element, defined as (xj , yj , wj , hj) (in the popular COCO format). cj is the class
label for the j-th element, indicating its object category. Evaluation is done
with the standard COCO metrics, i.e., average precision (AP) over different
intersection-over-union (IoU) thresholds, and mean AP (mAP).

Document Generation (DG) is the task of generating a document from a set
of key-value pairs and potential metadata attributes, e.g., visual appearance,
color scheme. The output space Y is the set of all possible document images,
which makes it hard to evaluate in a quantitative manner. Some efforts have
been made to define metrics for document generation, e.g., Document Earth
Mover’s Distance [169], but they are not yet widely adopted.

Other lesser known tasks include document object detection (DOD), table
structure recognition (TSR), document retrieval, document editing, document
translation, document summarization, document authenticity verification With
the rise of multimodal models, more data types are being considered jointly
with documents under the umbrella term visually-situated language, such as
charts, tables, handwriting, text-heavy scenes or illustrations, webpage and user
interface screenshots etc.

2.3.2 Datasets

With the variety of tasks, there is a large number of datasets available for each
DU task. Instead of exhaustively enumerating datasets for each task defined
above, we will link to the tables in the respective chapters treating these tasks.
We will only highlight some more recent datasets, which are not yet included in
the tables.
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An overview of document source datasets for pretraining or dataset construction
is presented in Table 4.1 as part of Chapter 4.

For an overview of DC datasets, see Table 4.2 in the same chapter. For an
overview of KIE datasets, we refer to [47], with some newer datasets [422, 485]
linked here. An overview of DocVQA datasets is presented in Table 5.1, with
the introduction of the DUDE dataset (Chapter 5). An interesting new addition
is PDFTriage [400] which focuses more on retrieval than on QA. Finally, some
datasets for DLA are presented in Table 6.1 as part of Chapter 6. Other essential
datasets are PubLayNet [544] and DocBank [261]; and the novel multidomain
M6 dataset [71].

2.3.3 Models

A model taxonomy is presented in [407] that differentiates models based on the
input modalities they use, the geometric approach, dependence on OCR, or
the type of output they produce. However, it is far from comprehensive due to
missing out on various DU tasks and more recent models. Table 2.2 presents
an overview of models that we have applied to various DU tasks, extending the
taxonomy with our observations.

Depending on the modalities considered and the requirements of the task,
different pretrained models have been used in practice, instead of the document
foundation models presented above.

For document text, the most popular models are BERT [95], RoBERTa [287],
and T5 [383]. Additionally, text-only LLMs such as GPT-3 [52], Llama [452],
and Mistral [199] are increasingly applied to document text.

For document images, the most popular models are ResNet [167], EfficientNet
[439], and DiT [259].

For all modalities combined, the most popular models are the LayoutLM series
[187, 502, 503], DocFormer(v2) [15, 16], and UDOP [443]. The former are OCR-
based pipelines, with pixel-only models such as Donut [216] and Pix2Struct
[247] gaining popularity for increased efficiency, albeit they are still catching
up on performance. Alternative approaches include the use of graph neural
networks [286, 341, 517] and grid-based models [212, 275], yet their performance
lags behind the aforementioned sequence models.

Most of the above-mentioned models have been applied during the Chapter 5
benchmark experiments, with only results missing for multimodal LLMs, which
were introduced after the publications of the chapter. An up-to-date overview of
newer multimodal LLMs, e.g., GIT2, PaLi, Flamingo, Kosmos-2, GPT-4, Fuyu,
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Model Year Conf. Arch. Input Mod. Vision Branch
LayoutLMv1 [502] 2020 KDD E T + S -
DocStruct [484] 2020 EMNLP E T + V + S Resnet50
StrucText [266] 2021 ACM E T + V + S Resnet50 + FPN
StructuralLM [254] 2021 ACL E T+S -
LayoutLMv2 [503] 2021 ACL E T + V + S ResNeXt 101
SelfDoc [263] 2021 CVPR E - -
LamBERT [134] 2021 ICDAR E T + S -
TILT [371] 2021 ICDAR E + D T + V + S U-Net
DocFormerv1 [15] 2021 ICCV E T + V + S Resnet50
UniDoc [153] 2021 NeurIPS E T+V+S Resnet50
DiT [259] 2022 ACM E V ViT
LayoutLMv3 [187] 2022 ACM E T + V + S Linear
BROS [181] 2022 AAAI E T + S -
XYLayoutLM [154] 2022 CVPR E T + V + S ResNeXt 101
FormNet [245] 2022 ACL E - -
ERNIE-Layout [264] 2022 EMNLP E T + V + S F-RCNN
LiLT [481] 2022 ACL E T + S -
XDoc [66] 2022 EMNLP E T -
GeoLayoutLM [296] 2023 CVPR E T + V + S F-RCNN+ConvNeXt
Vision Grid Transformer [80] 2023 ICCV E T + V + S ViT
DocFormerv2 [16] 2023 - E + D T + V + S Linear
Donut [216] 2022 ECCV E + D V SwinTransformer
Pix2Struct [247] 2023 ICML E + D V ViT+variableres
UDOP [443] 2023 CVPR E + D T + V + S ResNeXt 101
Hi-VT5 [451] 2023 PatRecog E + D T + V + S ViT
FormNetv2 [246] 2023 ACL E T + V + S 3-layer CNN
LayoutMask [458] 2023 ACL E T + S -
UReader [510] 2023 ACL D V + S CLIP-ViT
DocLLM [480] 2024 - D T + S -
Gramformer [44] 2024 - E + D T + V + S Linear
InstructDoc [442] 2024 - E + D T + V + S CLIP-ViT

Table 2.2. Adapted from [16]. A summary of DU prior art is presented with their
architecture (E: Encoder, D: Decoder), the input (T: text, V: vision, S: spatial features),
the vision features branch and core extensions.

Llava, CogVLM, that could potentially be applied to DU tasks is presented in
[512].

2.3.4 Challenges in Document Understanding

To tease the contributions of our works, we will highlight some of the most
important challenges in DU, which are shared by all chapters in this thesis.
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2.3.4.1 Long-Context Modeling

An important challenge for most SOTA DU models based on the Transformer
architecture is long document processing, which is not yet solved satisfactorily,
as it is the focus of Chapters 4 and 5.

We illustrate the extent of the problem with the most popular DU model,
LayoutLMv3 [187]2 in Figure 2.5, pointing to the quadratic complexity of
attention, which cannot be parallelized over pages with encoder-only models.
Hi-VT5 [451] is the only model that is by design usable for multipage documents,
yet it requires a lot of memory and depends on compressing page information
into learnable embeddings.
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Figure 2.5. Inefficiency of document foundation models for processing multipage
documents, illustrated with LayoutLMv3 [187]. Notation: L pages, T text tokens, M
linearized visual patches, S Transformer layers

While a page is the modeling unit of preference to maintain computational
efficiency in Transformers’ processing sequences of tokens, it is not the natural
appearance of a document. Some tasks require the global document context
and treating each page contextually independent is suboptimal, as argued in
our works on multipage document classification (Chapter 4) and DocVQA
(Chapter 5) with multi-hop question answering.

Figure 2.6 illustrates how a prototypical multimodal architecture, Hi-VT5 [451],
is used for the task of multipage ExVQA.

In principle, every LLM can perform multipage document processing depending
on the ability of the LLM to extrapolate to longer context windows, given
the position representation method (barring absolute positional encodings),
and performance relying on also having trained on long sequences, e.g., by

2>8.6M model weights downloads in January 2024



40 FUNDAMENTALS

OCR_0...T

 

...

Document Encoder

Q

How much does Solardyne 
still owe GroSolar?

<PAGE>_0

Bbox

Token Img_0...V

Answer DecoderQuestion type 
module

Answer type 
module

<PAGE>'_0 OCR'_0...T  Img'_0...VQ'_0...m

OCR_1..T

 

Document Encoder

<PAGE>_1

Bbox

Token Img_1...V

<PAGE>'_1 OCR'_1...T  Img'_1...VQ'_1...m

...

ExtractiveQuantity
$8,834.17

A
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instruction-tuning on long-context data. Naturally, the computational cost will
increase with the length of the input data, yet recently many advances have
made subquadratic complexity feasible (e.g. relative positional encodings [382],
ALiBi [374], Flashattention [82], multi-query attention [9] etc.). [102] provides
an overview of the SOTA in long-range Transformers for DU tasks. A recent
approach [44] proposes a hierarchical architecture to model both local page-
level attention and global document-level attention on learnable document-level
tokens, with an additional compression module to scale to 100+ pages while
keeping latency low.

2.3.4.2 Document Structure Modeling

Representing structured documents as plain text resulting from OCR is not
congruent with how humans perceive documents [294], which is the focus of
Chapter 6. Document layout is a valuable cue to navigate a document’s structure
and find information more efficiently, but it is not always modeled properly,
with most methods relying on geometric features (1D/2D absolute positional
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encodings) that are not robust to OCR errors, nor are they able to capture the
semantic complexity of document layouts.

There are great recent advances from better layout modeling, e.g., modeling
relative positions with polar coordinates and layout attention with Gaussian
biases [555], and DocLLM [480] ignoring visual features to focus on disentangling
the layout structure from the document text, which are promising directions
for future research.

2.4 Intelligent Automation

Automation is the use of technology to perform tasks with reduced human
assistance. Throughout history, humankind has experienced waves of
automation, from the invention of the wheel to the steam engine, the assembly
line, and the computer. Manual labor in particular, performed by blue-collar
workers, has been increasingly automated since the 20th century. When applied
to knowledge work as performed by white-collar workers, more through the use
of software than hardware, it is referred to as Intelligent Automation (IA,
not to be confused with the French acronym of ‘intelligence artificielle’) [1].

IA is a rapidly growing field, with the market for hyperautomation-enabling
technologies projected to have reached nearly $ 600 billion in 2022, a 24%
increase from 2020 [392]. A recent survey [135] does show that IA adoption is
lagging behind expectations, with only 19% of organizations having deployed
their automation programs and 38% in the planning stage.

[48] identified 5 key trends in IA: 1) the rise of the digital workforce, 2) the
emergence of the digital twin, 3) the importance of data, 4) the need for
orchestration, and 5) the rise of the citizen developer. The first three trends
are particularly relevant to the work presented in this thesis.

IA is a subset of Artificial Intelligence (AI) specifically designed for the
automation of knowledge work. It encompasses several technologies, including
Robotic Process Automation (RPA), which can be thought of as software
to automate routine tasks, and Workflow & Business Process Management
(BPM). When combined with people and organizations, these technologies are
capable of solving major world problems [48].

The goal of IA is to create a software-based digital workforce by mimicking
the four main human capabilities required to perform knowledge work: vision,
language, thinking & learning, and execution. This allows for the construction
of straight-through business processes, which are more efficient in terms of
productivity, processing speed, and cost, and often more effective in terms of
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quality and logic. The ultimate aim is not to replace human workers, but to
take the robot out of the human, augmenting human intelligence, creativity,
and productivity.

IDP/DU is a prototypical example of an IA use-case, as it frees workers from
paperwork, allowing them to focus on more value-adding tasks, thereby providing
a clear perspective on the future of work. Finally, we provide an overview of the
requirements for setting up IA, linking back to all technical concepts introduced
before.

Enabling IA requires well-defined CSFs and either operational thresholding to
determine the trade-off between automation and risk, or a selective prediction
setup. When a system is deployed in production, it also requires robustness to
distribution shifts, both expected and unexpected, and the ability to detect and
predict a wide variety of failures.

Measuring IA is performed using calibration metrics and confidence ranking
metrics. Calibration is the degree to which a model’s predicted probabilities
match the true probabilities of the events it predicts. Confidence ranking is the
degree to which a model’s predicted probabilities are ranked in accordance with
the true probabilities of the events it predicts. If the i.i.d. assumption becomes
violated, the model’s confidence ranking will be affected, and the model will
be overconfident on OOD inputs. As part of the deployment process, it is
important to monitor the model’s performance and to detect when it starts to
fail, where other metrics are more appropriate.

Improving IA Improvements to IA can be made by inducing calibration
through post-hoc strategies or designing calibrated loss functions, as well as
through predictive uncertainty estimation for model selection and capturing
issues with the data or model before deployment, and all investments in failure
prediction will be rewarded with more robust and reliable systems.
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Chapter 3

Benchmarking Scalable
Predictive Uncertainty in
Text Classification

The contents of this chapter come from two publications [465, 466]:

Jordy Van Landeghem, Matthew B Blaschko, Bertrand Anckaert, and Marie-
Francine Moens. Predictive Uncertainty for Probabilistic Novelty Detection in
Text Classification. In ICML Workshop on Uncertainty and Robustness in Deep
Learning, 2020

Jordy Van Landeghem, Matthew Blaschko, Bertrand Anckaert, and Marie-
Francine Moens. Benchmarking Scalable Predictive Uncertainty in Text
Classification. IEEE Access, 2022

The first publication started as a reproduction of [500] with a deeper focus on
text classification, and the second publication is a large journal extension of the
first publication.

This chapter focuses on how to quantify uncertainty in text classification
tasks, which is a prerequisite to trust a model’s predictions in real-world
applications such as intent classification in automated document processing
based on the document text. We conduct a benchmarking study of uncertainty

44
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estimation methods applied on 6 real-world text classification datasets, including
both multi-class and multi-label classification, with 1-D convolutional neural
networks and pretrained transformers. The experiments empirically investigate
why popular scalable uncertainty estimation strategies (Monte-Carlo Dropout,
Deep Ensemble) and notable extensions (Heteroscedastic, Concrete Dropout)
underestimate uncertainty, and how to improve their performance. We motivate
that uncertainty estimation benefits from combining posterior approximation
procedures, linking it to recent research on how ensembles and variational
Bayesian methods navigate the loss landscape.

We find that our proposed method combination of Deep Ensemble with Concrete
Dropout, by analysis of in-domain calibration, cross-domain classification, and
novel class robustness, demonstrates superior performance, even at a smaller
ensemble size. Our results corroborate the importance of fine-tuning dropout
rate to the text classification task at hand, which individually and as an ensemble
impacts model robustness. We observe in ablation that pretrained transformers
severely underperform in novelty detection, limiting the applicability of transfer
learning when distribution shift from novel classes can be expected.

Supporting context: As the publications were written at the start of my PhD,
we take the opportunity here to give an update on the state of the art and the
relevance of our work in uncertainty estimation research.
The journal extension was motivated as a survey and benchmark of scalable
Bayesian Deep Learning methods, in which we introduced novel hybrid
models and evaluated uncertainty estimation quality under distribution shift
configurations. We also provide a convenient entry point for practitioners, as
our benchmarking software is available online (https://github.com/Jordy-
VL/uncertainty-bench). Our work has also been re-used as the basis of a
conference tutorial [524, https://sites.google.com/view/uq-tutorial].

In similar spirit as our work, new benchmarks have put different aspects of
reliability and robustness to the test: Shifts [306] focuses on the robustness
of uncertainty methods to real distribution shifts in large-scale tasks across
overlooked modalities such as tabular, audio or sensor data, WILDS [220, 401]
curates a collection of labeled and unlabeled datasets exhibiting distribution
shifts in the wild, OpenOOD [527] generalizes a comprehensive benchmark
for out-of-distribution detection, anomaly detection and open-set recognition,
and finally, PLEX [455] probes pretrained models on their ability to estimate
uncertainty, exhibit robustness under shifts, and adapt in settings of active,
few-shot and life-long learning.

The supremacy of ensemble methods has been challenged by the recent
publication of [346], which proposes a new method for uncertainty estimation in

https://github.com/Jordy-VL/uncertainty-bench
https://github.com/Jordy-VL/uncertainty-bench
https://sites.google.com/view/uq-tutorial
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NNs, called EpiNet. The authors claim that their non-Bayesian method is able
to discern the difference between ambiguity or lack of data. Key ingredients are
a dyadic sampling procedure, which creates interesting data pairs that are used
to train a NN to predict the epistemic uncertainty, and a small architecture that
can supplement any conventional NN to improve OOD detection and active
learning [413]. Another competitive method [326] concentrates on feature-space
density estimation under the assumption of smoothness and sensitivity, with
their efficient baseline disentangling epistemic (Gaussian Mixture Model fit on
training features, with a separate covariance matrix per class) and aleatoric
uncertainty (entropy of softmax distribution). Other promising methods target
aleatoric uncertainty, such as [75, 474] which focus on label noise or ambiguous
tasks such as toxicity detection.

An important observation on the benefits of Bayesian NNs concerns the dataset
and model size, particularly Bayesian modeling shines in dynamic settings where
the size of the model/data are unknown or change over time [346], e.g., online,
continual, active and life-long learning. In static settings with high accuracy on
a fixed test set, the benefits of Bayesian modeling are less pronounced [215].

Next to PUQ, alternative approaches have sought to learn explicit scoring
functions [200, 351] or assess the similarity of inputs to the training distribution
[54, 271, 285, 379, 487]. All efforts have recently increased in popularity, as
uncertainty estimation has become even more important for safe deployment of
LLMs in user-facing applications [111].

3.1 Introduction

Reliable uncertainty quantification is indispensable for any machine learning
system trusted in decision-making in many application domains such as medical
diagnosis, self-driving cars and automated document processing. In any typical
industrial application, we desire predictive uncertainty to communicate on the
model’s lack of in-domain knowledge due to either training data scarcity or
model design errors, or its ability to flag potentially noisy, shifted or unknown
input data (see [136] for more detail on sources of uncertainty).

Supervised Deep Learning (DL) algorithms have been found to provide
“catastrophically overconfident predictions” [116] under data distribution shift.
Specifically, novel class distributions can emerge at inference time [367], which
desirably should be detectable in a model’s uncertainty. To this end, scalable
Bayesian DL (BDL) methods for uncertainty estimation have been recently
developed, generating increased interest from practitioners in need of practical
solutions. BDL comprises an increasingly large range of theoretically well-
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motivated predictive uncertainty methods (PUQ), yet only some are able to
scale in network architecture and dataset size. Additionally, most surveys
and research output on predictive uncertainty is based on multi-class image
classification or regression experiments. We argue that predictive uncertainty
methods and how well they scale in Natural Language Processing (NLP), for
text classification tasks, is still an under-explored question.

The context of our study is a production-level text classification system for
automatically handling incoming communications in information-intensive
industries (e.g. legal, banking, insurance). Imagine a digital-first company
where each department has its own document classifier operating under a closed
world assumption. However, whenever a client mistakenly sends a document (car
purchase invoice requesting a loan) to the wrong department (say underwriting
or medical claims), this can generate high-confidence false positives that trigger
the wrong action (insurance or claim settlement instead of loan application).
Similarly, if an insurance broker suddenly decides to completely change the
document template that clients use to apply for a car loan, the production
model might not find previously salient features which it had learned to rely on
for accurate classification. This shows that detection of anomalous inputs and
shifting distributions is critical to keep errors in automation low.

We investigate different techniques and procedures for incorporating uncertainty
into DL models for text classification, analyzing the degree to which they can
reliably capture uncertainty under extrapolation (outside the support of the
training set), both individually and combined in an ensemble. Our findings for
individual predictive uncertainty methods are overall consistent with benchmarks
in other modalities, with Deep Ensemble reporting greater robustness than
approximate Bayesian methods. However, we discover from empirical findings
that our newly proposed combinations, particularly MC Concrete Dropout
Ensemble, can push the bounds by exploiting the in-domain calibration effect of
Concrete Dropout and all-round ensemble qualities for increased out-of-domain
and novel class robustness.

We intend our work to be used as a survey and benchmark of scalable BDL
methods, where the architectures and datasets are drawn from NLP, thereby
covering a void in the literature on uncertainty estimation in this field. Next to
proposing a well-motivated evaluation methodology, this chapter also provides
a convenient entry point for practitioners.1

Our key contributions can be summarized as follows:
• We conduct a benchmarking study of established uncertainty estimation
1Our benchmarking software [TensorFlow 2] is available at https://github.com/Jordy-

VL/uncertainty-bench

https://github.com/Jordy-VL/uncertainty-bench
https://github.com/Jordy-VL/uncertainty-bench
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methods applied on real-world text classification datasets. Our analysis
focuses on model robustness and uncertainty quality in realistic data
distributions. We propose a practical methodology to test the above,
resulting in a better understanding of the individual shortcomings of
predictive uncertainty methods.

• We motivate and introduce novel combinations of predictive uncertainty
methods, providing empirical evidence for their complementary benefits.
Through statistical analyses and ablation experiments we discern the
importance of certain prior, model or hyperparameter influences on the
reliability of predictive uncertainty.

Organization The paper is organized as follows. Section 3.2 overviews
related work in uncertainty benchmarking, distribution shift, and uncertainty
estimation in NLP. We present core concepts of BDL in Section 3.3 to build
up a thorough understanding of predictive uncertainty in theory and practice.
We include this introductory text for readers less familiar with uncertainty
methods. Section 3.3.5 critically analyzes the practice of evaluating uncertainty
under distribution shift. Sections 3.3.4 and 3.4.1 stand central in our work,
connecting recent research on how neural networks navigate the loss landscape
with posterior approximation procedures, followed by our work’s hypotheses on
complementary benefits between predictive uncertainty methods.
Section 3.4 details our methodological setup from datasets, model architectures,
uncertainty estimation and evaluation, to experimental settings. We present
in Section 3.5 the results of 3 large benchmarking experiments, followed by
4 smaller ablation studies on important hyperparameters. After closing the
discussion in Section 3.6 with take-home messages targeting researchers and
practitioners interested in uncertainty prediction in text classification, Section 3.7
details additional experiments, and Section 3.8 draws up some limitations of our
research. Finally, we synthesize our contributions in Section 3.9 and propose
directions for future work on uncertainty research in NLP.
The Appendices support the main text by detailing implementation (A),
practical considerations (compute, timings) (B), and detailed evaluation data
for full transparency (C).

3.2 Related Work

In this Subsection, we overview recent literature on benchmarking the quality of
uncertainty quantification in DL and more specifically research on uncertainty
estimation for NLP tasks.
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Increasingly, there are efforts from the research community to help BDL methods
scale to real-world scenarios [205]. Benchmarks are an important tool to
help researchers prioritize the right approaches and to inform practitioners
which methods are suited for their applications [276]. There is a growing
demand for benchmarking in BDL, since methods must be scored both for task
performance and uncertainty quality [411, 496]. Rigorously evaluating the latter
is considerably more difficult, since depending on the problem setting no direct
uncertainty ground-truth exists, requiring a well-defined experimental setup
[323].

A standard benchmark in BDL is UCI [176], a set of curated regression datasets,
which allows to judge uncertainty quality with the predictive log-likelihood
metric. However, its general applicability and validity has been criticized on
multiple accounts [113, 323, 360].

More recently, [19, 113, 301, 348, 462] presented large-scale evaluation studies
of BDL methods with benchmarking on real-world datasets. These studies
motivate data retention and distribution shift as generic protocols for evaluating
predictive uncertainty. Similarly, we argue that even mild shifts of data are
unavoidable in real-world applications and, conditional to specific distribution
shift assumptions (see Section 3.3.5), this provides a good testing ground for
uncertainty evaluation.

[348] consider two types of distribution shift: (a) out-of-distribution (OOD) data
from separate datasets, and (b) adversarial shift, where the test distribution
consists of perturbed or corrupted ground truth data isolated from training.
In our work we propose novel class detection as an alternative to a), which we
motivate to be a more representative experimental setup for testing uncertainty
in text classification (more detail in Subsections 3.3.5 and 3.4.5.3). [142] bring a
similar argument against b) that adversarial examples are often overly synthetic
and disconnected from real-world performance concerns, which we assert to be
especially true for perturbations applied to text data. Therefore, we derive a
challenging experimental setup for b) (more detail in Section 3.4.5.2) inspired
by the extensive literature in NLP on the problem of domain shifts and domain
adaptation [45, 84, 129, 203, 388, 557]. Domain adaptation approaches aim to
mitigate performance degradation that occurs when transferring a classifier from
a source domain to a target domain. Learning under domain shift presents a
complex challenge in text classification since linguistic patterns can be highly
different across domains, even harder to tackle when domains are unknown a
priori [388]. While out-of-domain generalization is the ultimate objective [18],
we believe that accurate uncertainty prediction has a major role to play in the
detection of out-of-domain data, which is currently under-explored. [488] is a
notable exception where predictive uncertainty methods are leveraged to learn
domain-invariant features in unsupervised fashion.
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In this work we only consider methods that directly estimate the predictive
posterior and aim at obtaining high quality uncertainty estimates by
discriminative models without any additional OOD components. However,
there exists a large number of alternative OOD detection and generalization
approaches. We surmise that these can be more effective in handling the
above distribution shifts, yet they have different modeling assumptions which
complicates a direct comparison, for instance, access to (auxiliary) OOD data
[271, 285], generative modeling [334], focus on abstention mechanisms [138], or
characterization of dataset shifts with a two-sample-testing approach [379]. We
recommend [54, 414] for an overview of these approaches.

While previous BDL benchmarks have helped standardize protocols, metrics and
analysis tools, the effort is not spent equally across all modality and problem
settings (as can be observed in the survey of [4]). Arguably, most research on
uncertainty estimation focuses on regression and image classification tasks as
they offer visual validation on uncertainty quality, e.g., [214].

Tasks in the NLP field involve discrete natural language units (word, sentence,
paragraph) as input, which requires a translation to the continuous domain by
embedding discrete units to form high-dimensional distributed representations
[321]. This presents additional complexity compared to image or time-series
data which as continuous signals can be directly fed into a Neural Network
(NN). Furthermore, specialized algorithms (e.g., dealing with long sequences,
attention for larger memory [473]) and progressively more complex architectures
[27] are being created to tackle this unique challenge in NLP, which can affect
the performance of predictive uncertainty techniques. With our work, we
start the exploration into effects of field characteristics, notably different NLP
architectures, inherent task complexity, and properties of language in text
processing (e.g., ambiguity [397], document length [478], pre-defined vocabulary
[68]) that could cause problems when predicting uncertainty. More specifically,
we seek to answer how uncertainty research translates to a prototypical language
task such as text classification, which more frequently than vision tasks is
characterized by non-mutually exclusive labels [312], a problem setting ignored
by existing BDL benchmarks.

BDL research on NLP tasks is generally limited, certainly when considering
quantitative evaluation of predictive uncertainty quality. While we draw
inspiration from the uncertainty estimation methods of [500], their study focuses
on the performance increase of non-probabilistic measures (mean-squared error)
and only reports sentiment regression results. Moreover, we find no quantitative
evaluation of the quality of the uncertainty scores and comparison to simpler
measures of uncertainty, for instance, softmax score or predictive entropy. [174]
does focus on the robustness of pretrained Transformers to distribution shift, yet
without application of any predictive uncertainty methods. [322, 533] present
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similar setups applying Monte Carlo Dropout to regular NLP architectures in an
active learning setup, yet they only aim to increase overall predictive performance
by relying on in-domain calibration. Our work benchmarks individual and joint
predictive uncertainty methods in multiple text classification task settings
over two well-motivated uncertainty evaluation setups, testing robustness to
distribution shift for NLP problems.

3.3 Uncertainty Methods

The first Subsection formally presents how to quantify uncertainty in BDL
and how popular methods approach inference differently. Section 3.3.2 treats
predictive uncertainty methods with a focus on the algorithmic procedure,
followed by representative method extensions for more reliable uncertainty
estimation. Section 3.3.3 describes from what sources uncertainty originates
and how to quantify uncertainty at test-time. In Section 3.3.4 we present the
rationale of our study, connecting recent research on how NNs navigate the
optimization landscape with the posterior approximation procedure of methods
from Section 3.3.2. Section 3.3.5 provides a critical note on how distribution
shift impacts uncertainty estimation and the evaluation thereof.

3.3.1 Quantifying Uncertainty in Deep Learning

In modern Deep Learning, two common uncertainty (or inversely “confidence”)
estimates are the maximum posterior class probability, known as softmax-score,
and the predictive entropy over posterior class probabilities [415, 522]. However,
[156]’s work on confidence calibration demonstrated these to be unreliable
estimates of Neural Networks’ uncertainty. While post-hoc calibration methods
such as Temperature or Vector Scaling [156, 419] can easily calibrate classifier
uncertainty in-domain (further discussed Section 3.3.5), they have been found
to be less effective under increasing distribution shift [19, 348].

Bayesian Deep Learning (BDL) methods build on solid mathematical
foundations and hold promise for more reliable learned uncertainty estimates
[496]. Drawing on the ground-laying works of [91, 179, 299, 300, 337], the
“second-generation” in BDL [140] is geared towards finding practical and
scalable approximations to the analytically intractable Bayesian posterior
(Equation (3.1)). Inferring a prediction and the associated uncertainty for
a new test input x∗ (with its associated label vector y∗) requires computing the
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conditional probability of x∗ given the training data D =
{(
x(n), y(n))}N

n=1 ,

P (y∗ | x∗,D) =
∫
P (y∗ | x∗,D, θ)P (θ | D)︸ ︷︷ ︸

posterior

dθ, (3.1)

with θ representing all Bayesian Neural Network (BNN) parameters: weights w,
biases b.

In our study we will focus on two strategies with representative methods that
circumvent the inference problem and have seen more widespread adoption
given their ability to scale both in network architecture and dataset size.

I. The weight snapshots direction, Deep Ensemble [238], which aims
to find different sets of model parameters. Snapshots can be collected
during different stages of training [133, 186, 301], or by using a sampling
process such as Markov Chain Monte-Carlo (MCMC) [141, 180, 530]. II.
The stochastic computation-graph direction, Monte Carlo Dropout
[124], involves introducing noise over weights during training and estimating
uncertainty with multiple stochastic forward passes. Recent works [283, 464]
have proposed "single-model" uncertainty methods that ideally compute posterior
uncertainty in one forward pass.

Our work benchmarks representative methods from both categories (denoted by
cursive), motivating a cross-category comparison and analyzing their individual-
joint effectiveness in modeling predictive uncertainty.

Additionally, we later experimented with alternative scalable uncertainty
methods, namely stochastic gradient MCMC methods, cyclical SG-MCMC
(cSG-MCMC) [530], and a single forward pass uncertainty method incorporating
a Gaussian Process (GP) output layer, Spectral-normalized Neural Gaussian
Process (SNGP) [283]. Results and discussion for these are included as a
self-contained subsection Section 3.7.

3.3.2 Predictive Uncertainty Methods

We will first introduce each method by explaining the algorithm, followed by
advantages or identified shortcomings, with subsequent method extensions from
the same procedure category. Finally, we will zoom in on how to quantify
uncertainty using each method.
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3.3.2.1 Monte Carlo Dropout

The seminal work of [124] on Monte Carlo Dropout (MC Dropout, MCD) pro-
poses efficient model uncertainty estimation by exploiting dropout regularization
as an approximate Variational Inference (VI) method. In practice, the MCD
procedure boils down to (i) applying dropout on all non-linear layers’ weights,
and (ii) activating dropout both during training and evaluation. Quantifying
“epistemic” model uncertainty using MCD involves sampling T stochastic weight
sets from the variational Bernoulli distribution θ̂t ∼ q(θ) to calculate the
lower-order moments of the approximate Gaussian posterior, respectively the
predictive mean and variance (Equation (3.2)).

µ̂pred(x∗) = 1
T

T∑
t=1

P (y∗|x∗, θ̂t),

σ̂2
pred(x∗) = 1

T

T∑
t=1

[P (y∗|x∗, θ̂t)− µ̂pred]2
(3.2)

MCD’s simplicity and computational tractability, i.e., dropout training is a
standard DL practice and prediction only requires 1 model to sub-sample from,
has made it one of the most popular predictive uncertainty methods. However,
an important shortcoming of VI, and in consequence MCD in [124]’s formulation,
is that it is known to underestimate predictive variance [459]. We will touch on
a selection of method extensions in Sections 3.3.2.3 and 3.3.2.4.

3.3.2.2 Deep Ensemble

Deep Ensemble [238] (DE) involves independently training multiple NNs
with different random weight initializations and aggregating predictions from
individual models. An ensemble of NNs trades off computational resources,
due to the need to train and store M models, for uncertainty estimation and
robustness to dataset shift [163, 348, 489]. In comparison to MC Dropout,
DEs are treated as a uniformly-weighted Gaussian Mixture model, to which the
formula for predictive variance is adapted:

σ̂2
pred(x∗) = 1

M

∑
m

(
σ2
θm

(x∗) + µ2
θm

(x∗)
)
− µ2

∗(x∗),

µ∗(x∗) = 1
M

∑
m

µθm(x∗)
(3.3)



54 BENCHMARKING SCALABLE PREDICTIVE UNCERTAINTY IN TEXT CLASSIFICATION

The empirical performance increase of ensembles can be attributed to the
diversity of uncorrelated errors between ensemble members [225]. Without
functional diversity in sets of model parameters, posterior approximation quality
will be lower (zero variance) and for this reason, ensemble diversity promotion
is a promising avenue for further improvements [49, 196]. Alternatively,
the interplay between ensembling and regularization, "the effect of a prior",
warrants more thought, since not regularizing risks overfitting, while too strong
regularization risks constraining diversity (see Section 3.3.4).

3.3.2.3 Concrete Dropout

[125] proposes a Continuous-discrete distribution relaxation to adapt and
optimize the dropout probability p as a variational parameter using standard
gradient descent. This overcomes the limitations of uncertainty underestimation,
miscalibration, and the computational complexity of manually tuning layer-
wise dropout probability in deeper models [345]. By taking advantage of
the reparametrization trick, the Concrete distribution approximation z̃ of the
original Bernoulli random variable z conveniently parametrizes to a simple
sigmoid distribution (φ = sigmoid) allowing for gradient-based optimization.
Given a uniform random noise variable u and a temperature r, the expression
varies with respect to the dropout probability p, which for p→ 0.5 produces by
a rate of 1

r values approaching 1.

z̃ = φ

(
1
r

(log p− log(1− p) + log u− log(1− u))
)

(3.4)

Since the dropout probability characterizes the overall posterior uncertainty,
Concrete Dropout can positively influence in-domain calibration at an almost
negligible cost.

3.3.2.4 Heteroscedastic Extensions

[213, 236, 500] proposed similar approaches to extend MC Dropout to allow
measuring uncertainty information from different sources. Estimating input-
dependent, “heteroscedastic aleatoric”, data uncertainty (detail Section 3.3.3)
requires slightly modifying the model’s architecture and objective function
following [213].

Firstly, the output layer of model fθ̂ is extended with a set of learnable variance
variables σ2 per unique class output. The model’s output logits, v, are sampled
from the stochastic output layer parametrized by N (fθ̂(x), diag(σ2(x))). This
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model adaptation will be referred to as the heteroscedastic model. Fig. 3.1
visualizes the difference in output layer design.

Figure 3.1. Visualization of output layer blocks. The left block denotes
standard softmax (multi-class) or sigmoid (binary/multi-label) output. On the
right, the heteroscedastic model outputs a normal distribution N (µ(x), diag(σ2(x))
parametrizing mean and variance by the logits coming from two separate preceding
feedforward layers.

Next, it requires incorporating a heteroscedastic loss:

LHET(θ̂) =
N∑
i=1

log 1
T

T∑
t=1

exp
(

v(t)
i,c − log

K∑
k

exp v(t)
i,k

)
+ log T (3.5)

with N the number of training examples passing through an instance t of
the model fθ̂t

(x) + σ(t) ((2 omitted for sampling superscript) to generate for
example i a sampled logit vector v(t)

i ∈ RK , where predicted value for class k,
v(t)
i,k ∈ R, and c the index of the ground truth class. The above loss formulation

shares notation with a categorical cross-entropy objective, although the loss is
computed over T sampled logits v(t)

i perturbed with parameterized Gaussian
noise. By learning to predict log variance over T dropout-masked samples, the
model will be able to output high variance (uncertainty) for inputs where the
predictive mean is far removed from the true observation, which by design has
a smaller effect on the total loss.

3.3.3 Uncertainty Estimation

In this Subsection, we will introduce sources of uncertainty, a categorization of
uncertainty measures, and how uncertainty is quantified in practice.

Total Uncertainty Classification models trained by minimizing negative log-
likelihood quantify global uncertainty over class outcomes with entropy (H) over
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logits. Therefore, the entropy of the posterior predictive distribution provides
a measure of the total uncertainty, which is a combination of model and data
uncertainty [190]. Instead of entropy, posterior predictive variance can also be
decomposed into model and data uncertainty using the law of total variance
[92]. Decomposing total uncertainty into the different sources is beneficial for
determining actions to evaluate the room for improvement.

Model Uncertainty Epistemic uncertainty presents the inherent ignorance
[345] of the model with regards to the true values for its parameters and
structure after having seen the training data. Next to predictive variance,
Mutual Information (MI) [426] has been proposed as a measure of epistemic
uncertainty, as intuitively it captures the amount of information that would be
gained about model parameters through “knowledge” of the true outcome [305].

Data Uncertainty Aleatoric uncertainty captures the inherent stochasticity
and noise in data. It can be further decomposed into a homoscedastic component,
which represents constant noise over inputs such as the numerical accurateness
of a measuring device, and heteroscedastic uncertainty representing input-
dependent noise generated by class overlap, complex decision boundaries or
label noise [92]. Heteroscedastic data uncertainty allows for the expression of
instance-level uncertainty together with the best possible prediction.

Uncertainty categorization Here follows a categorization of the
uncertainty measures from methods (and combinations) of Section 3.3.2. We
directly provide estimators for the theoretical quantities that are defined as
either arising from entropy or variance-based uncertainty decomposition in
[92]. To estimate for a new test sample x∗ the prediction and uncertainty of
model fθ̂(x∗) we typically seek to obtain the predictive posterior distribution
P (y∗|x∗, θ̂) over class membership probabilities with y∗k ∈ {1, . . . ,K}.

For MC Dropout at inference time, we presume P (y∗|x∗, θ̂) ≈ 1
T

T∑
t=1

P (y∗|x∗, θ̂t),

with prediction obtained after applying softmax/sigmoid function for sample
t, p̂t = P (y∗|x∗, θ̂t). For Deep Ensemble, the above notations would require a
change from T to M , but for consistency over quantity formulas, we maintain T
to denote posterior sampling. For ease of notation, we define a helper entropy

function on H(x∗, ·) = −
K∑
k=1

P (yk|x∗, ·) logP (yk|x∗, ·) with · an input argument
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to the function.

Quantity Formula

Softmax-score S = max
k

exp fθ̂,k(x∗)∑K

j=1 exp fθ̂,j(x∗)

Predictive Entropy Hpred = H(x∗, θ̂)

Mutual Information I = Hpred −
1
T

T∑
t=1

H(x∗, θ̂t)

Model Uncertainty σ̂2
model = 1

T

T∑
t=1

(p̂t − µ̂pred)2

Data Uncertainty σ̂2
data = 1

T

T∑
t=1

1
K

K∑
k=1

var(t)
k (x∗)

For any classification model, it is possible to compute the softmax-score and
predictive entropy. For multi-label classification, the softmax-score does not
take into account multiple winning classes and a standard approximation2 would
be to average over the sigmoid-scaled probabilities of predicted classes.

Model uncertainty can be quantified with Monte Carlo integration or the
aggregation of individual models [461]. In practice, it is quantified by either (a)
calculating the average sigmoid/softmax variance over the predictive mean
from MC samples (Equation (3.2)) or (b) computing the total variance
from an ensemble mixture distribution (Equation (3.3)). Changing to the
heteroscedastic extensions allows to quantify data uncertainty. More specifically,
data uncertainty is quantified with as “surrogate” [500] the average over variance
logits var = σ2 (see Fig. 3.1). Whenever ensembling is applied where a single
model estimates a quantity, one typically averages over the ensemble components’
uncertainty.

2Intending to compare directly with multi-class results, averaging uncertainty estimates
to obtain a single summary statistic for multi-label predictions is more straightforward than
reporting class-wise results. In particular, the tested multi-label datasets share low average
label cardinality, a high degree of label correlation, and a large set of unique classes (K > 50).
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3.3.4 Motivating Hybrid Approaches

This Subsection will motivate the theorized complementarity of VI-based and
ensembling methods for improved uncertainty estimation and robustness.

In light of the empirical success of Deep Ensemble, recent research [118, 496]
raises an important question concerning the difference in function-space between
variational Bayesian NNs (MC Dropout and extensions) and Deep Ensemble.
Deep NNs are parametrized (typically non-linear) functions presenting a high-
dimensional non-convex optimization problem, which may concern widely
varying curvature and many flat regions with multiple locally optimal points
within each [255]. Applying an optimization procedure to a maximum-a-
posteriori (MAP) objective involves a search for parameter values (hypotheses)
for which the loss function is low by navigating the high-dimensional loss
landscape. Once model training converges, one ends up with a weight-space
solution, representing a single mode of the parameter posterior . One such mode
is a local optimum of the loss function L(θ), representing unique functions fθ
as a set of NN parameters [133]. Each mode potentially marks a meaningfully
different representation of the data.
The true posterior is generally a highly complex and multimodal distribution,
with multiple possible but not necessarily equivalent parametrizations θ able to
fit the training data. To accurately quantify posterior uncertainty, we wish to
capture as many modes or separated regions as possible [117, 496].

Correspondingly, the common goal is to achieve reliable uncertainty and,
following the BDL paradigm, one resorts to modeling a Bayesian posterior.
What differs among the selected predictive uncertainty methods, is the form of
the prior P (θ) over model parameters and likelihood P (D|θ) [336], from which
to determine a procedure. Below we expound on the difference in posterior
approximation procedure:
• MC Dropout is a common VI procedure with Bernoulli dropout and Gaussian

(L2) priors on weight-space, assuming a posterior Gaussian distribution
from which to draw stochastic samples. VI-based methods tend to locally
approximate uncertainty surrounding a single mode, intra-modal posterior
approximation. Specifically, MC Dropout’s procedure can be interpreted as
imposing a spike-and-slab parameter prior with peaked variance [333], which
offers a plausible explanation for approximated uncertainty centered tightly
around 1 mode.

• An ensemble of NNs makes no direct assumptions on the form or distribution
of the prior and just “obtains” different samples from the parameter posterior.
It generates a series of MAP estimates which through inherent stochasticity
in weight initialization and optimization end up at different regions in weight
space, leading to functionally dissimilar but more or less equally accurate
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modes of the solution space. Due to randomness in the optimization, some
solutions may be significantly worse than others as measured by different
metrics (e.g., accuracy vs. calibration). Ensembles are effective at exploring
the weight-space and by solving the MAP estimation problems converge to
multiple modes [117, 149], allowing for inter-modal posterior approximation.
Furthermore, by considering more possible hypotheses they will be better at
approximating multimodal posterior distributions and avoid the collapse to
a single mode [496].

Combining both procedures is to generate a mixture over priors [119], which
in itself is again a prior, all under the same likelihood function. There is no
guarantee that a combination of methods from both procedures captures the
true posterior, yet in our work we will empirically analyse if combining inter and
intra-modal posterior approximation offers the hypothesized complementary
benefits.

3.3.5 Uncertainty Calibration under Distribution Shift

In this Subsection, we motivate the meaningfulness of evaluating uncertainty
methods under distribution shift and what restricted assumptions one should
reasonably specify to guarantee useful empirical results.

We consider the problem of detecting out-of-distribution data from a trained
classifier’s uncertainty. Let PS(x, y) and PT (x, y) denote two distinct
distributions, respectively in-domain and out-of-domain. Further we assume
the classifier f → [0, 1] trained on PS , whereas in the experimental setup we
test on a mixture distribution P(S,T )(x, y). Given an input x from the mixture,
we test if the classifier’s uncertainty can be exploited to distinguish from which
distribution the sample comes. To be clear, in this setting we expect to detect
uncertainty arising from distribution shift and not from a lack of training data.
It can be argued that there is a relationship between both, as having few
in-domain samples complicates generalization, in turn increasing the chance of
flagging a new data point as OOD.

Uncertainty estimation is generally well-defined in the context of in-domain data
with the standard assumption that samples are independent and identically
distributed (i.i.d.). In this setting, evaluation is typically expressed in terms of
calibration (Definition 8), particularly as statistical error with respect to the
conditional expectation (Definition 7).

To obtain a reliable probabilistic classifier in the traditional i.i.d. setting, explicit
in-domain re-calibration approaches are effective [156, 229, 490]. However, there
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is no general principle which states that a classifier, however calibrated on
PS , would be calibrated on OOD data from PT . Infinitely many possible
shifts can violate the standard i.i.d. assumption at varying degrees of severity,
affecting calibration and uncertainty estimation in unpredictable ways. With
the aim of still being able to rely on a classifier’s uncertainty calibration to
predict future generalization, there is a need to relax the i.i.d. assumption. An
important condition for meaningful uncertainty estimation is to impose realistic,
yet sufficiently restrictive assumptions on the nature of distribution changes
and how PS and PT relate. The covariate shift [34, 418] assumption may be
the most widely studied when the real-world data distribution differs from the
training distribution.

Recently, [354] formalized the problem of calibrated prediction under covariate
shift with theoretical bounds on calibration transfer over domains. Critically,
related works [104, 145, 335, 349, 483] prove with importance weighting that
shared structure and high overlap in distribution support (or conversely, low
domain divergence) is crucial to upper bound the increase of calibration error
due to covariate shift. To put it plainly: while one cannot guarantee calibration
on OOD data in the general case, if domains are reasonably close one can expect
to retain (some if not most) benefits from in-domain calibration.

Specific to our work, we consider two experimental settings (Section 3.4.5) with
different distribution shift [320] between domains. Here we characterize each
with the related distribution shift assumptions. (i) Cross-domain classification,
where covariates differ PT (X) 6= PS(X), but label distributions are identical
PT (Y |X) = PS(Y |X) [418]. (ii) Novelty detection, where label distributions
disagree PT (Y |X) 6= PS(Y |X), since the label sets differ between domains
[Y ]T 6= [Y ]S [307]. Whereas (i) is a clear case of covariate shift, we reasonably
assume for (ii) that covariates are generally close PT (X) u PS(X) and that
the overall conditional shift will be small. Rather than interpreting novelty as a
shift in label sets, one might define the probability of seeing some labels under
S as exactly zero, while under T their probability is ε > 0. In practical text
classification settings, novel class inputs will typically start occurring with small
frequency in the real-world data distribution, as well as not having completely
different syntax and semantics. This implies that ’excess’ calibration error
(defined as an expectation over the mixture) will only be impacted slightly.

Clearly specifying distribution shift assumptions is quintessential for reliably
benchmarking uncertainty methods, since the calibration of each tested method
can be affected in different ways and produce results biased towards an evaluation
configuration. In our selected experimental settings, we can justify uncertainty
calibration under distribution shift as a reasonable methodology, without making
further claims on the general applicability of this evaluation procedure.



EXPERIMENTAL METHODOLOGY 61

3.4 Experimental Methodology

In this work, our objective is to reliably benchmark both existing and novel
combinations of predictive uncertainty methods in order to draw conclusions for
text classification applications. This Section describes our study’s experimental
methodology with which we generate the empirical evidence presented in
Section 3.5. Section 3.4.1 introduces our hypotheses on complementary benefits
for uncertainty estimation and details the hybrid methods. Provided the focus on
text classification tasks, Section 3.4.2 motivates a set of representative datasets,
with a specification of different text problem characteristics. Section 3.4.3
documents two pre-selected text classification architectures, the first a simple
and more controllable configuration for uncertainty benchmarking, the second
a more complex NLP architecture for which we will compare relative gains
in robustness. To ensure correct performance benchmarking, Section 3.4.4
summarizes the metrics used for evaluating calibration and robustness. Finally,
Section 3.4.5 expounds on the model setups and experimental settings devised
to compare predictive uncertainty methods.

3.4.1 Proposed Hybrid Approaches

This Subsection stands central in our work in which we motivate combinations
of predictive uncertainty methods. We build hypotheses on complementary
benefits from combining multiple uncertainty methods, for which we present an
overview of hybrid methods in scope of our experiments (Table 3.1).

Given the obvious parallels and differences between both procedures presented
in Section 3.3.4, we hypothesize complementary benefits for uncertainty
estimation and robustness.

A. Whereas ensembles are adept at capturing multiple modes, they do not
approximate uncertainty surrounding a single mode in solution space.
However, since there is a lot of redundancy in function space, local
neighborhood uncertainty approximation might make only a minimal
contribution to the overall posterior uncertainty. [118] validated that
applying subspace sampling on an optimized solution improves in-domain
accuracy and calibration. They note improvements relatively lower
than increasing ensemble size (M), yet they did not analyze for joint
effectiveness.

B. A procedure can only be as good as the prior and the likelihood function,
which in approximation of the intractable parameter posterior is limited by
computational constraints (number of MC samples T , number of ensemble
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models M). By lack of any specific prior constraining the optimization of
independent ensemble members, the regularization effect from VI-based
priors such as dropout may introduce smoothness [110, 369], inducing
a simpler optimization landscape with less (possibly weak) hypotheses
present. In turn, by modeling an ensemble of VI approximate posteriors
less ensemble members could be required to reach the same in/out-of-
domain performance as measured by the size and quality of captured
solutions. [118] already observed that ensembles saturate after reaching
peak in-domain performance, with suboptimal models taking over the
benefit.

C. Important to note is that the influence of the prior and variational
parameters requires fine-tuning, since over-regularization will reduce the
optimization problem to one with an over-smooth, possibly unimodal
landscape [117, 133]. This eliminates any functional diversity for whatever
ensemble size, where the solution will be overconfident. Alternatively,
since the hypothesis space for a NN is often so large, with many possible
likely models for finite data, that some posterior collapse will often be
desirable to reduce the number of considered hypotheses. [496].

Table 3.1 summarizes all model setups and hybrid methods considered for
our experiments. The most complete combination is MC Concrete Dropout
Heteroscedastic Deep Ensemble, where each member m of the ensemble has
optimized the layer-wise dropout rate p and heteroscedastic loss LHET, with the
final predictive distribution over K classes deriving from M times T stochastic
MC Dropout samples (M x T x K).

Table 3.1. In total, we consider 18 model setups, based on combining methods and
options from each column. (*) Deterministic dropout can only combine with Deep
Ensembles. CE stands for cross-entropy loss.

Dropout MC sampling Heteroscedastic Deep Ensemble
p = 0* T = 1 LCE M = 1
p = 0.5 T = 10 LHET M = 5

Concrete

We admit two baselines, Unregularized and Regularized.
Unregularized (p = 0) offers a clean comparison, discounting any influence of
sparsification (dropout) or normalization of weight magnitude (weight decay).
However, it possibly overfits parameters to training data. In practice, one
would always apply some combination of regularization (dropout, weight decay,
batch normalization, data augmentation, ...) to counter overfitting. Regularized
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(p = 0.5) gives an alternate point of comparison over uncertainty methods, such
that we can exclude that performance increase for an uncertainty method does
not only come from regularization, which some such as MC Dropout rely upon.

Adhering to good practices and since we build ensembles with default M = 5,
we report the mean (and standard deviation) for all individual models, making
the results more statistically reliable than comparing to 1 independently trained
model.

3.4.2 Datasets

We use six well-studied real-world text corpora characterized by a different
number of classes, classification task, and size of the documents (Table 3.2).

Table 3.2. D denotes the number of documents in the dataset, K the number of classes,
I the class imbalance ratio [444], W the average number of words per document, V
the total vocabulary size respectively.

corpus task D K I W V

20news newswire topic 18,848 20 5e-4 240 212,267
IMDB movie review 348,415 10 0.03 325.6 115,073

CLINC-OOS intent detection 22,500 150 0 8 6,188
Reuters ApteMod newswire topic 10,786 90 0.14 125.2 65,035

AAPD academic paper subject 55,840 54 0.04 145.4 66,854
Amazon Reviews (#4) product sentiment 8,000 2 0 189.3 21,514

The first three datasets share the task of multi-class classification in three
different text domains.
20News [239] is a collection of 20K newsgroup documents with balanced samples
for 20 different newsgroups. To allow for direct comparison, we use the dataset
in the benchmark format of [172].
IMDB movie reviews [97] (imdb) is a large sentiment classification dataset
which links user-based reviews of movies with labels on an ordinal scale between
1 and 10. Since there are no standard splits for this dataset we generate
randomized (seed 42) stratified splits of 65% for training, 15% validation and
20% for testing.
CLINC-OOS (CLINC150) [240] is a recently become popular intent detection
dataset comprising 150 training sentences for each of the 150 system-supported
services. Next to this, it offers a separate Out-of-Scope (OOS) subset with
1200 natural sentences which can be used for Out-of-Domain (OOD) detection,
more specifically detecting novel class instances. This dataset differs from the
previous two through very short “intent” sentences requiring classification in a
large output space. For training and evaluation, we use the predefined splits of
TensorFlow Datasets.
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We include two popular multi-label text classification datasets, since they are
often not considered for uncertainty experiments. We argue that they should
be included since their multi-label nature is very common in text classification
where not all labels have to be mutually-exclusive, e.g., topic categorization,
subject attribution, ...
Reuters ApteMod [17] is a multi-label news topic categorization dataset with
90 possible topics and an average low label cardinality (C) of 1.24. We use the
standard ApteMod splits.
Arxiv Academic Paper Dataset (AAPD) [505] comprises 55,840 computer
science paper abstracts that have been labeled with corresponding multiple
subject matters. Each academic paper has on average 2.41 subject targets with
a minimum of 2. For reproducibility purposes, we use the same preprocessing
steps and splits as in [5, 505] with 1K dev and 1K test samples.

Amazon Reviews [45] is a widely-used benchmark for domain adaptation research
in NLP. It consists of binary sentiment classification datasets from four different
domains: Books, DVDs, Electronics and Kitchen appliances. Each domain
dataset contains 1K positive and 1K negative labeled instances. Following
the convention of previous works [103, 557], we construct 12 balanced cross-
domain sentiment analysis tasks, where for each source dataset we randomly
hold out 400 test instances to evaluate in-domain and always predict on the full
target dataset. We reserve this dataset for cross-domain experimentation only
(Section 3.4.5.2).

3.4.3 Architecture

This Subsection motivates the two NLP architectures in scope for the
experiments.

TextCNN architecture We use a 1-D Convolutional NN for text classification
(TextCNN), following the model structure of [218]. We chose this architecture
for its comparative simplicity and solid out-of-the-box performance on a range
of text classification tasks. Even as a light-weight model, it can deal with
feeding in text sequences of varying sizes and learning n-gram-like structures
over word embeddings, allowing a fair comparison across text datasets. An
extensive hyperparameter study determined that regularization does not impact
performance much [537].

Transformer architecture Models in NLP have become increasingly deeper
and more complex with the advent of the Transformer architecture [473]. [94]
have combined multiple bidirectional Transformers with wordpiece tokenization
and self-supervised pretraining objectives —masked language modeling and
next sentence prediction— to create the contextual representation modeling
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architecture BERT. It allows for fine-tuning on downstream tasks where BERT
has outperformed task-specific architectures even in low resource settings. In
our experiments we use BERTbase (uncased, English): 12 layers, 768 hidden
dimensions, 12 attention heads, with a total number of 110M parameters.

(a) TextCNN (b) BERT

Figure 3.2. Simplified block-diagrams for each of the NN architectures, demonstrating
on which layer weights dropout is applied.
(a) The TextCNN model architecture with 3 kernels (K1 − 3), E word embedding
dimensionality and F number of feature maps per kernel.
(b) The BERT model architecture with L Transformers blocks, hidden size H and
number of self-attention heads A.

Complexity TextCNN comprises only 6M parameters with most parameters
residing in the embedding matrix. However, it is restricted to a fixed window size
with the downside of not being able to determine long-distance dependencies in
text. BERT, on the other hand, has already captured prior language modeling
knowledge thanks to pretraining. Nevertheless, our experiments already involve
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significant computational complexity, which is why we decided not to run all
variations with BERT. TextCNN presents a more controllable configuration,
achieving decent performance and satisfying for the evaluation of predictive
uncertainty in text classification. We include an ablation study (Section 3.5.4.2)
comparing specifically selected models trained with BERT as base architecture.

3.4.4 Evaluation metrics

Since no single metric measures all desirable properties of predictive uncertainty,
we use a variety of conventional metrics to evaluate our models’ performance,
(a) calibration metrics, b) proper scoring rules and c) classification scores.

The metrics are defined in detail in Section 2.2.3, here we will only provide a
brief description.

For in-domain evaluation, we use the following metrics: (a) Expected
Calibration Error (ECE) [156, 332], (b) Brier Score [50] and (b) Negative
Log Likelihood (NLL) [378]. We use the same metrics for out-of-domain
evaluation, with the addition of (c) AUROC and (c) AUPR for distribution
shift detection following [172].

When evaluating a model trained in a source domain on a target domain with
a similar task, we denote accuracy in the target domain as OOD accuracy as
opposed to accuracy in the source domain, which we denote as ID accuracy.

3.4.5 Experimental design

We have determined three logical settings in text classification to evaluate
predictive uncertainty for each model setup. We present experiments on
in-domain uncertainty to form baseline results, followed by cross-domain
classification with a focus on out-of-domain detection, and finally we propose
novelty detection as a new protocol to evaluate predictive uncertainty.

While there is no gold standard procedure for comparing multiple (uncertainty)
methods over multiple (text classification) datasets, we opted for an established
procedure with statistical testing via multiple comparisons [89, 109]. Since we
present an exhaustive list of model setups, we present our results in terms of
rank and critical difference diagrams in order to analyze relative performance
of each method over different experimental settings.
Concretely, each dataset concerns independent measurements, for which we
rank each method, then compare average ranks, and in the event that we can
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reject the null-hypothesis (H0: all methods have the same rank), we calculate
post-hoc tests with critical differences over methods. However, only reporting
ranks does not allow future researchers to compare to our work, which is why
we include detailed absolute number results in the Appendix C.

3.4.5.1 In-domain Setting

To evaluate in-domain (ID) uncertainty, we will focus on measuring calibration
and prediction quality with proper scoring rules (see Section 3.4.4). The ID
setting assumes that the train and test examples are i.i.d.. To capture all details,
we compare per task-setting, multi-class and multi-label, and finally zoom in on
dataset-specific observations. For the in-domain evaluation, we focus on unique
contributing effects per predictive uncertainty method and the relation between
method combinations and evaluation metrics.

• When evaluating with proper scoring rules, does an absolute increase in
combination size (higher T or M) correlate with better performance?

• What effect —equal over all tasks, datasets or architectures— can be
discerned per unique predictive uncertainty method?

3.4.5.2 Cross-domain Setting

Since we test over sentiment classification datasets from multiple domains
(Amazon Product Reviews), we seek to analyze uncertainty reliability across
domains. However, learned knowledge from a source domain can often transfer
to classification in the target domain. Provided this setting we need to account
for cross-domain generalization next to out-of-domain detection, the latter which
is the focus of our experiments.

Cross-domain generalization - how well does a classifier trained in a source
domain perform on a dissimilar target domain sharing a similar task? The aim of
cross-domain generalization is to learn a robust classifier, which can perform well
in multiple domains even if there is limited labeled data in some of the domains.
Domain discrepancy is a major challenge where, for instance, linguistic sentiment
expressions used in one domain can be different from that of the source domain.
For example, “garbage disposal” is neutral in kitchen appliances whereas a
“garbage movie” is strictly negative. This domain discrepancy challenge is often
approached by adaptation [497, 557] or encouraging domain-agnostic feature
representations [103, 129]. We propose to test out-of-domain detection with
predictive uncertainty as a viable fallback strategy when achieving generalization
over domains is difficult.
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Out-of-domain detection - how reliably can a classifier trained in a
source domain communicate uncertainty in a target domain provided good/bad
generalization? Whenever a model does not generalize to OOD examples,
we would expect a model to be uncertain, allowing detection in order to
abstain or trigger conservative fallback strategies [108]. As a proxy to good/bad
generalization we measure the gap between in-domain and target domain
accuracy as evidence of train-test skew. We argue that our current setting is
more realistic than benchmarking OOD detection in totally disparate domains
such as evaluating a newswire classifier on movie reviews.

Our analysis will be centered on the following question:

• How does domain similarity affect out-of-domain detection with uncer-
tainty methods? Is there a clear increase of uncertainty given a higher
OOD generalization gap?

3.4.5.3 Novelty Detection Setting

Novelty detection - how well can the model identify and communicate
uncertainty on samples of a novel class? In the worst case, classifiers “fail
silently” and wrongly attribute high confidence to an in-distribution class
[11, 146]. In the best case, the model either lowers its confidence or signals
uncertainty. Prior work hypothesizes model uncertainty to be mostly impacted
[213, 250].
With this experiment we simulate the conditions of novel class data by removing
a single or multiple classes during training. The resulting distribution shift is
not too far from the original domain and cannot be considered fully out-of-
distribution (as detailed in Section 3.3.5).

We determine diverse novelty detection strategies adapted per dataset. For
20news, we follow [172, 348] and take out all odd-numbered classes to simulate
novel distribution shift. Since imdb is a sentiment classification dataset, we
isolate the middle class, rating “5” out of the 10 ratings, from training and
expect the models to allocate prediction mass to a label close to the holdout
class (ratings “4” or “6”). CLINC-OOS provides a separate out-of-scope intents
set on which we assess novel class robustness.

We devise a new strategy for the multi-label classification datasets, where we
would isolate a class that is very distinct from the remaining classes, i.e., (i)
by not appearing often in the originally multi-label annotated dataset jointly
with the remaining classes, and (ii) occurring frequently enough to guarantee
representative results. We draw statistics on the label co-occurrence rates of
each dataset, and find that for Reuters “Acquisitions” (id:0) occurs in 94% of
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documents as a single topic, making it an ideal candidate for testing novel class
detection. For AAPD we apply the similar strategy and find the frequent label
“CS.it” (id:0) to have relatively low label- co-occurrence (2.49), even when there
are at least 2 labels to be predicted per sample. We isolate all examples where
the novel class appears, either alone or in combination with other labels.

We focus our analysis around three specific questions concerning predictive
uncertainty under distribution shift, and compare generally to other modality
benchmarks:

• Do hybrid predictive uncertainty methods incrementally or critically
improve detection of unseen class instances?

• Does calibration in the in-domain setting translate to calibration under
distribution shift?

• Do we see the same trends as in benchmarks from different modalities
(Section 3.2)?

3.5 Results

We will present the experimental results in a step-wise manner to avoid confusion
on the conclusions to be drawn. We start with general and task-specific trends
observed for the in-domain setting, followed by the distribution shift experiments,
cross-domain classification and novelty detection. Finally, we present 4 ablation
studies on critical, learned or empirically set hyperparameter values.

Figure 3.3. In-domain results with critical difference diagram comparing all methods
by average rank, with the calculated critical difference in the top-left and Friedman
χ2 p-value top-right. Concrete Dropout Ensemble achieves the highest NLL rank.
While comparing over 5 datasets, the critical difference is large, with only the two
aforementioned methods significantly differing from MC Dropout.
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3.5.1 Experiment: In-domain

Naively combining predictive uncertainty methods will not give any absolute
performance increase, as proper scoring rules show no correlation (-0.01) with
the absolute number of predictive uncertainty methods combined. This requires
deeper analysis to identify which singular or hybrid methods do significantly
outperform baselines.

First, we visualize general results with critical difference diagrams comparing
all methods by average ranking over datasets (Fig. 3.3). Critical difference (CD)
can be interpreted as the smallest difference between methods which is likely
to indicate a significant improvement. In short, the null hypothesis —there
is a significant difference between the methods— cannot be rejected for all
methods connected by a dark bar. We also report Friedman χ2 , which is a
non-parametric statistical test that considers ranking methods over different
attempts, in our case datasets, requiring a minimum of 3 methods in comparison.
This test checks whether the measured average ranks are significantly different
from the mean rank that is expected under the null-hypothesis.

Table 3.3. In-domain (left) combined Brier and NLL proper scoring rule pairwise
comparison counts of wins/draws/losses and (right) ECE metric reported for comparing
in-domain calibration. For in-domain predictive accuracy, ensembles clearly are
superior. Considering only miscalibration, Concrete Dropout generally adds calibration
to predicted probabilities. The combination with MC Dropout gives unpredictable
ranking results.

ref wins draws losses
9 Deep Ensemble 142 0 28
12 Concrete Dropout Ensemble 135 1 34
16 Heteroscedastic Concrete Dropout Ensemble 130 4 36
15 MC Heteroscedastic Ensemble 114 2 54
17 MC Heteroscedastic Concrete Dropout Ensemble 114 2 54
11 MC Ensemble 111 3 56
13 MC Concrete Dropout Ensemble 102 0 68
10 Deep Ensemble Regularized 90 1 79
14 Heteroscedastic Ensemble 82 2 86
0 Unregularized 79 4 87
5 Concrete Dropout 77 1 92
7 Heteroscedastic Concrete Dropout 70 3 97
8 MC Heteroscedastic Concrete Dropout 65 2 103
6 MC Concrete Dropout 58 0 112
4 MC Heteroscedastic 40 5 125
2 MC Dropout 39 6 125
1 Regularized 34 0 136
3 Heteroscedastic 30 0 140

ref wins draws losses
5 Concrete Dropout 68 1 16
12 Concrete Dropout Ensemble 58 1 26
4 MC Heteroscedastic 52 1 32
8 MC Heteroscedastic Concrete Dropout 52 0 33
2 MC Dropout 49 2 34
15 MC Heteroscedastic Ensemble 48 1 36
16 Heteroscedastic Concrete Dropout Ensemble 48 0 37
7 Heteroscedastic Concrete Dropout 46 0 39
9 Deep Ensemble 45 1 39
0 Unregularized 40 2 43
6 MC Concrete Dropout 40 0 45
11 MC Ensemble 38 2 45
17 MC Heteroscedastic Concrete Dropout Ensemble 37 1 47
1 Regularized 32 0 53
3 Heteroscedastic 29 2 54
14 Heteroscedastic Ensemble 27 2 56
10 Deep Ensemble Regularized 24 2 59
13 MC Concrete Dropout Ensemble 23 0 62

Table 3.3 shows more detailed pairwise comparison scores, demonstrating that if
both proper scoring rules are considered, plain ensembles and hybrid methods
based on deep ensembles are overall superior to single model uncertainty
prediction methods. However, the benefit resides more in accuracy than
calibration, where some single model predictive uncertainty methods rank
higher, specifically Concrete Dropout.
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For a most complete answer to unique effects per predictive uncertainty method,
we need to analyze dataset-specific results. Detailed results per dataset and
metrics (Appendix C.1 Fig. A.1) reconfirm that a method’s superiority (i.e.,
for the whole application domain of in-domain text classification) should not
be concluded based on 1 single dataset. Each dataset has specific problem
characteristics, which affect method ranking differently at varying magnitudes.
However, the comparative performance of each method is not fully dependent
on the dataset tested, with Deep Ensemble performing reliably in-domain as
evidenced by rank.

3.5.2 Experiment: Cross-domain

This Subsection is dedicated to analyzing predictive uncertainty methods under
domain shift. We first present results on cross-domain generalization, followed
by a challenging OOD detection setting. Finally, we draw parallels between
both settings’ experimental results.

We conduct extensive experiments on the benchmark Amazon product review
datasets on a total of 12 source-target domain configurations. Each domain
is abbreviated by its first uppercase letter: (B)ooks, (D)VD, (E)lectronics,
(K)itchen. Fig. 3.4 reports on the lowest cross-domain generalization gap
between ID and OOD domain datasets. We observe higher ID accuracy for
Kitchen and Electronics, which can indicate a relatively lower complexity of
domain sentiment. Importantly, the gap between Kitchen - Electronics and
Books - DVD are smallest overall, coinciding with our intuitions on domain
similarity. Remarkably, regularized Deep Ensemble trained on Book reviews
even scores higher accuracy (+1.8%) on its target domain (B−→D).

Figure 3.4. Lowest accuracy generalization gap, in-domain (Acc_ID) minus out of
domain (Acc_OOD) accuracy (y-axis), of all predictive uncertainty methods per
source−→target domain combination (x-axis).

To analyze the cross-domain performance of predictive uncertainty methods we
report average rank ID NLL and OOD accuracy (Fig. 3.5). Heteroscedastic
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ID NLL OOD Accuracy

Figure 3.5. Average rank of in-domain NLL for the 4 source datasets (left) and out-of-
domain accuracy over 12 source-target configurations (right) for all tested predictive
uncertainty methods.

Concrete Dropout Ensemble ranks highest in-domain when evaluated with a
proper scoring rule. Models without any regularization achieve higher OOD
accuracy scores, with Deep Ensemble significantly outperforming more than half
of the predictive uncertainty methods (first black bar). A possible explanation
could be that most target domain data is more similar to the source domain than
expected, effectively giving an edge to methods that achieve high ID accuracy.

To evaluate Out-of-domain detection, we report AUROC ranks in Fig. 3.6
and additionally plot OOD detection over generalization scores in Fig. 3.7.
Concrete Dropout Ensemble and variations outrank other methods on OOD
detection. Nevertheless, we must nuance the ranking results since the magnitude
of AUROC is generally low, close to random (50-54%) with no class imbalance,
over all 12 cross-domain settings. These results might indicate that from the
perspective of the methods tested, there are no salient differences between the
different domains. More specifically, Books and DVD as a source have AUROC
scores on target OOD domain data centered around 51% and Kitchen and
Electronics as a source have comparable AUROC scores with 1 higher AUROC
(54%) cluster for OOD Books and DVD targets.

Figure 3.6. Average rank of OOD AUROC over 12 cross-domain settings for predictive
uncertainty methods.

Additionally, Fig. A.2 in Appendix C.1 demonstrates a similarly clear difference
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Figure 3.7. AUROC detection magnitude (y-axis) mapped over OOD accuracy (x-axis)
with a legend on the right for methods that support uncertainty estimation.

in correlation effect size of uncertainty quantities with ID-OOD data depending
on the target domain, e.g., high overall mean correlation (0.3) for Kitchen source
evaluated on the disparate domain of Books, whereas uncertainty correlation
on Electronics averages around 0.1 for the most correlated quantities.

3.5.3 Experiment: Novelty Detection

Before analyzing which predictive uncertainty methods provide better detection
of instances of an unseen class, we report on how uncertainty metrics (cf.
Section 3.3.3) correlate with novel class data.
In Fig. 3.8 the final rank over datasets confirms the superior robustness of
predictive entropy as an uncertainty metric. Logically, it is closely followed by
maximum softmax score. Next, model uncertainty correlates generally well with
novel class data. Interestingly, model uncertainty outperforms entropy on AAPD,
with most methods showing the need for learning from more data to better
approximate the model parameters.

Similarly to the evaluation of in-domain performance, we use CD diagrams (Fig.
3.10) with binary detection metrics AUPR and AUROC to provide a ranking
of predictive uncertainty methods over datasets.
The absolute pairwise comparisons (Table 3.9) confirm that hybrid predictive
uncertainty methods improve detection of novel class data. Quite surprisingly,
Deep Ensemble which ranked absolute highest for in-domain, drops multiple
ranks in favour of combination ensembles (Heteroscedastic Ensemble or even
MC Concrete Dropout). The in-domain calibration effect from Concrete Dropout
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(a) 20news (b) CLINC150 (c) imdb

(d) Reuters (e) AAPD

Figure 3.8. We report the Pearson Correlation Coefficient (PCC) between uncertainty
values and binary variable ID-OOD for 5 benchmark datasets. Higher absolute
correlation score points to stronger association of uncertainty and novelty detection.
*Model Uncertainty (MU), Data Uncertainty (DU), Mutual Information (MI).

appears to pass over to this novelty detection setting. More importantly, it also
helps boost the novelty detection performance of Deep Ensembles when jointly
used (e.g., MC Concrete Dropout Ensemble).

While comparing over 5 datasets, there is no critical difference between the
average ranking of methods, which can point to task or dataset-specific
interactions. Fig. 3.11 shows the variation of AUROC performance for the
different methods, from which we can observe that (non-finetuned) dropout
sampling (MC Dropout) under-performs in most datasets, most clearly on AAPD,
by severly underestimating uncertainty on samples of a novel class. We also
observe relative benefits of the Heteroscedastic loss function for multi-class text
classification, which most clearly is represented in the CLINC150 results. The
same visualization allows us to evaluate the quality of uncertainty quantification
for each method. Generally, epistemic uncertainty derived from ensembles
offers higher quality detection of novel class data than single model predictive
uncertainty. This effect is clearly visible for multi-class classification where the
ensembles clearly group on top, as opposed to the results for the multi-label
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ref wins draws losses
MC Concrete Dropout Ensemble 121 1 48
Heteroscedastic Ensemble 119 1 50
MC Concrete Dropout 109 1 60
MC Heteroscedastic Ensemble 102 0 68
Deep Ensemble Regularized 100 0 70
Concrete Dropout 90 1 79
MC Heteroscedastic Concrete Dropout Ensemble 89 2 79
MC Heteroscedastic Concrete Dropout 86 1 83
Concrete Dropout Ensemble 83 0 87
Regularized 81 1 88
Heteroscedastic 80 0 90
Deep Ensemble 80 0 90
Heteroscedastic Concrete Dropout Ensemble 75 2 93
MC Heteroscedastic 75 0 95
MC Ensemble 71 2 97
Unregularized 69 0 101
Heteroscedastic Concrete Dropout 47 1 122
MC Dropout 46 1 123

Figure 3.9. Novelty detection AUROC and AUPR pairwise comparison counts of
wins/draws/losses.

Figure 3.10. Novelty detection CD diagram of AUROC.

datasets.

Additionally, we visually detail in Appendix C.1 Fig. A.3 density estimates for
uncertainty quantities with respect to in-domain versus novel data with most
hybrid ensemble methods demonstrating better separable densities.

3.5.4 Experiment: Ablations

In this Subsection, we zoom in on the best performing uncertainty prediction
methods relative to the complementary benefits hypothesized for hybrid
approaches (Section 3.4.1), provide explanations for results specific to an
architecture (TextCNN vs. BERT, Section 3.4.3), and present ablations on
critical hyperparameters.
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(a) AUROC (b) Epistemic uncertainty

Figure 3.11. Comparison with AUROC(↑) and Epistemic uncertainty PCC(↑) for task
and dataset-specific differences in novel class detection. Methods with 0 correlation
do not support model uncertainty quantification.

3.5.4.1 Diversity

Diversity of samples drawn from a posterior, either via T MC samples and/or
M ensemble components, is an important condition for efficient uncertainty
estimation. If each sample presents a similar function, the overall prediction
can be overconfident, and increasingly drawing samples will not reduce this.
We derive a small experimental setting from [118] to measure function-space
diversity for all predictive uncertainty methods involving posterior sampling.

In Fig. 3.12 we analyze the relation between accuracy and diversity as measured
by Kullback-Leibler divergence between a sampled prediction and the predictive
mean, 1

T

∑T
t=1 KL(p(y∗|x∗, θ̂t)||p̄(y∗|x∗, θ̂)). For a fair comparison, we calculate

diversity at the ensemble level if a predictive uncertainty method consists of
multiple models, else at the dropout sample level.

While the diversity-accuracy plane does not provide a one-on-one linear
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(a) 20news (b) CLINC150 (c) imdb

(d) Reuters (e) AAPD

Figure 3.12. Detailed accuracy scores mapped over diversity measured by average KL
divergence for each of the benchmark datasets.

relationship, we note in Fig. 3.12 (a,b,d) promising results for hybrid ensemble
methods, which with higher diversity improve on accuracy over Deep Ensemble.
The visual of imdb (c) registers overall low diversity, even for simple predictive
uncertainty methods which generally achieve higher diversity, albeit by capturing
multiple dissimilar yet weaker functions. For AAPD (e), most methods are tied
for exact accuracy even with different diversities.

3.5.4.2 NLP Architecture

We selected specific representative predictive uncertainty methods on the
basis of our previous experiments to run with the Transformer BERT as
base architecture. We argue that the chosen architecture can have a non-
negligible impact on uncertainty estimation, and we compare with the simple
yet controllable TextCNN architecture in order to investigate whether the same
conclusions hold for novelty detection.

The separate Out-of-Scope set of CLINC150 allows us to easily evaluate novelty
detection with BERT. We observe in Fig. 3.14 on CLINC150 that BERT does
increase novelty detection over all metrics. Even without any hyperparameter
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(a) ID Accuracy - imdb (b) ID Accuracy - Reuters (c) AUROC - 20news

(d) AUROC - Reuters (e) Epistemics - 20news (f) Epistemics - imdb

Figure 3.13. Novelty detection scores mapped per architecture for the benchmark
datasets without dedicated OOD split. The legend of Fig. 3.11 applies here.

Figure 3.14. Detailed AUROC-epistemics (PCC) scores mapped per architecture on
CLINC150. Best performance: upper-right corner. The legend of Fig. 3.11 applies
here.

tuning Unregularized BERT outperforms all TextCNN models. Overall, we
register the same ranking of predictive uncertainty methods, albeit a Deep
Ensemble with BERT is superior to hybrid ensembles. Crucially, we note that
the correlation of epistemic uncertainty with novelty detection is higher for each
TextCNN ensemble than for every single BERT model.

Most notably, results on all other datasets are inconsistent with the above. For
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comparison, we have trained an informed sub-selection of predictive uncertainty
methods with BERT as base architecture (Fig. 3.13).

Generally, we observe in (a,b) higher ID accuracy for BERT with relatively
slighter gains when ensembling. AUROC scores (c,d) are well below even single
TextCNN models, pointing to a crucial deficiency with BERT in a novelty
detection setting. The correlation of epistemic uncertainty with novel class
samples draws a similar picture (e,f). MC Heteroscedastic Concrete Dropout
Ensemble on imdb does produce more correlated epistemic uncertainty than all
other methods.

(a) 20news - MI (b) CLINC150 - AUROC (c) imdb - MU

(d) Reuters - MU (e) AAPD - H

Figure 3.15. Visualization of representative dataset-quantity/metric combinations
mapped over stepwise increasing ensemble size M . Note that positive and negative
correlations are corollary to the quantity reported. Given the small relative differences,
plots are best viewed online.

3.5.4.3 Ensemble size M

Combining models to an ensemble generally benefits performance both in and
out-of-domain. Previous research [118, 238] worked out that ensembling benefits
stagnate with larger model sizeM . Fig. 3.15 selectively reports novelty detection
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metrics or uncertainty correlation scores for all ensemble-based methods of
different sizes.

AUROC score for CLINC150 (3.15b) is a representative example of the expected
effect of ensembling. Importantly, it provides crucial evidence for our general
hypothesis, demonstrating that ensembling over predictive uncertainty methods
gives complementary benefits in novelty detection settings. What is similarly
interesting is that the relative benefit of ensembling shows slightly different
curves in certain cases. Epistemic uncertainty for imdb (3.15c) already attains
similar performance at M=2, again showing comparatively slower (since less
required) increase at larger M for hybrid ensembles. AAPD (3.15e) shows more
stagnant behavior for the reliability of entropy with growing ensemble size,
irrespective of the predictive uncertainty method.

3.5.4.4 Concrete Dropout p

Figure 3.16. Learned layer-wise dropout probability per layer for each method with
Concrete Dropout. The first 3 layers are the CNN kernels (K1− 3), followed by the
penultimate layer µ, possibly with σ for modeling heteroscedasticity. The legend of
Fig. 3.17 applies here.

Fig. 3.17 relays an important observation on the dataset-wise adaptation of
Concrete Dropout: increasing the learned dropout rate as is required for the
problem at hand. This reinforces the argument against fixed-rate dropout.
[125] remarked that practitioners started to adopt the strategy of fine-tuning
dropout with a bottleneck pattern, i.e., start with a higher dropout rate in early
layers and decrease the deeper you go in the network. Our results (Fig. 3.16)
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shows discrepancy with this practice, specifically for 20news and CLINC150. We
do note that both converged to low dropout rates, which can provide the basis
for this differing behavior.

Figure 3.17. Top: Average epoch of convergence per dataset. Bottom: Average learned
Concrete Dropout probability per dataset over predictive uncertainty methods. We
observe very dataset-dependent dropout rates.

3.6 Discussion

Our study investigates both scalable and hybrid procedures for incorporating
uncertainty into DL models for text classification. Next to baseline in-domain
uncertainty evaluation, we have designed two experimental settings, novelty
detection and cross-domain classification, to analyze the reliability of uncertainty.
Additionally, we devised ablation studies to analyze important hyperparameters
in connection to our three hypotheses (Section 3.4.1) on complementary benefits
for hybrid uncertainty prediction methods.

Benchmarking uncertainty methods We summarize our findings suc-
cinctly and discuss the results of each experimental setting.

We find that individually (> indicating “outperforms” over all experiment
settings):
Deep Ensemble > Concrete Dropout > (MC) Heteroscedastic ≥MC Dropout

We find that jointly, by considering method combinations:
(MC) Concrete Dropout Ensemble ≥ (MC) Heteroscedastic Ensemble >
MC Concrete Dropout > Deep Ensemble > Deep Ensemble Regularized >
MC Dropout
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In-domain results (Section 3.5.1) corroborate the superiority of Deep Ensemble
with high accuracy and proper scores (NLL, Brier). Table 3.3 demonstrates
that the improvements come from accuracy as opposed to calibration, where
Concrete Dropout-based methods rule.

Cross-domain experiments (Section 3.5.2) give differing conclusions: cross-
domain generalization results are similar to in-domain, whereas out-of-domain
detection follows novelty detection results. Our evaluation of uncertainty
quantities (Fig. A.2) demonstrate reliably higher correlation of uncertainty
with domain discrepancy. We do take note of relatively low magnitude AUROC
(Fig. 3.6), which underlines how challenging out-of-domain detection is in a
domain adaptation setting with comparably similar linguistic patterns.

Novelty detection (Section 3.5.3) in text classification gives reverse results:
Hybrid ensemble methods with Concrete Dropout rank highest scored by
AUROC, AUPR and model uncertainty correlation, followed by other method
combinations that induce calibration. We do note that specific method
performance is often tied to task and dataset characteristics, with results
averaged over the 5 benchmark sets showing statistically non-significant
differences between methods. As shown in Table 3.9, standard Deep Ensemble,
i.e., without any regularization or prior from combining methods, perform worse
outside the in-domain setting. The case for standard MC Dropout is even worse
with novel class robustness (AUROC and AUPR) lower than the Unregularized
point-estimate model.

Remarkably, BERT performs worse than the simpler TextCNN model at
detecting distribution shift in the form of novel class data (Fig. 3.14). Results on
the OOS set of CLINC150 differ from results obtained on all other datasets, which
we believe can be attributed to the short, in-domain intent commands differing
strongly in vocabulary with the OOS samples, resulting in a comparatively less
challenging novelty detection setting. We contend that novelty detection is
actually more challenging for BERT despite of its pretrained language modeling
knowledge and because of the strict requirement to fine-tune the task-specific
final layer with new supervision. Its ability to detect (and overly rely on, e.g.,
[162]) statistically relevant yet possibly spurious cues in language data will make
it overconfident with transfer to a new task when the i.i.d. assumption cannot
be maintained.

Validating hybrid approaches We have empirically analyzed individual-
joint effectiveness in modeling predictive uncertainty and will answer our three
hypotheses on complementary benefits from combining inter and intra-modal
posterior approximation.
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Firstly [A], ensembling (increasing M) proves to give relatively higher
performance benefits than stochastically sampling predictions from an optimized
solution (T ). The effect is clearest in the in-domain setting (Table. 3.3)
and is less pronounced in the out-of-domain settings. For a given predictive
uncertainty method, we cannot provide solid evidence that uncertainty reliability
always improves when subspace sampling (increasing T , “MC”). AUROC and
AUPR rankings (Figs. 3.10 and 3.6) present evidence in favour, although Fig.
3.11 depicts a more fine-grained comparison over datasets and uncertainty
methods. Our analysis of diversity (Fig. 3.12) shows promising results for
hybrid ensemble methods, which exhibit higher diversity in posterior samples
resulting in improved accuracy.

Secondly [B], our newly proposed hybrid uncertainty estimation methods
improve effectively over singular methods, both in novelty detection (Table
3.9 and Figs. 3.10, 3.11) and out-of-domain detection (Fig. 3.6). Additionally,
in ablation studies we find (Fig. 3.15) that combining predictive uncertainty
methods in an ensemble attains higher performance with a lower number of
models (M < 5) compared to a Deep Ensemble (M = 5).

Thirdly [C], Table 3.3 demonstrates that MC Concrete Dropout improves over
MC Dropout (p=0.5) on ECE and proper scoring functions. The out-of-domain
experiments (detail: Fig. 3.11) similarly show that not fine-tuning dropout
to the dataset and task at hand is detrimental even when combining models
into an ensemble (e.g., MC Ensemble vs. MC Concrete Dropout Ensemble).
Ablation on Concrete Dropout (Fig. 3.17) points to very dataset-dependent
learned probability rates, which vary strongly layer-wise (Fig. 3.16). We
link the empirical superiority of MC Concrete Dropout Ensemble to balanced
posterior collapse, thanks to the VI-based optimization of the dropout prior.
We tentatively claim that the former provides constrained hypothesis support
and a more fine-tuned influence of prior.

Benchmark comparison When comparing our results to existing BDL
benchmarks, most observations are consistent for in-domain and out-of-domain
performance.
Our in-domain results are most similar to [348], where Deep Ensemble
outperforms most methods, —albeit in their survey they did not compare
combinations of predictive uncertainty—, in our benchmark closely followed
by hybrid ensemble methods. When evaluating over various data retention
rates [113] observed that “an ensemble of MC Dropout models” (our MC
Ensemble) consistently outperforms all other methods. This survey offers the
closest point of comparison, although our experimental settings vary. While
we cannot directly compare cross-domain detection with other benchmarks, we
argue that our cross-domain classification setting mimics their low data regime
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experiments.

Across different modalities and tasks, Deep Ensemble has been reported to
consistently outperform VI-based methods, most specifically MC Dropout,
with/without distribution shift (image classification [348], molecule prediction
[409], and pendulum physics [56]). However, for a binary image classification
problem, [113] report higher accuracy for MC Dropout compared to Deep
Ensemble, whereas our results suggest that MC Dropout can induce positive
calibration, yet score lower on accuracy and with proper scoring rules. In
their experiments they use a fixed dropout rate of 0.2 and fine-tuned weight
decay rate, making them fitting for their task at hand and explaining possibly
optimistic results. Another uncertainty quantification benchmark [462] reports
strong results on image classification for various Monte Carlo methods, although
we cannot make a direct comparison. For further discussion, we refer the reader
to Appendix 3.7.1.

Our results suggest that BERT performs worse in a novelty detection setting,
whereas [174] concludes that Transformers are considerably more robust when
compared across domains, e.g., detection of news samples with a sentiment
classifier. We point out below that both settings are in fact incomparable. We
evaluate detection on novel samples which have alike vocabulary characteristics
to the source domain albeit they are excluded from training supervision. Their
setting evaluates detection between very disparate domains where linguistic
patterns are significantly different and BERT will most probably fallback to
its pretrained knowledge for detection. In short, we do believe that pretrained
Transformers could perform better under varying distribution shifts, yet with
our results underpinning the exception of novel class detection. More research
is needed into how the inductive bias from given NN architectures influences
approximate inference.

Take-homes For predictive uncertainty in text classification, we derive a
number of take-homes from the benchmarking evidence, centered around
practical facets to consider for applications.

One has to consider (i) ease and cost of implementation, (ii) computational
and memory complexity, comprising training compute, test compute and
storage/memory constraints, (iii) the degree of fine-tuning required, (iv) type
of supervision; multi-class with low/high number of classes (K) or multi-label
with low/high cardinality (C), (v) expectation of distribution shift; in the form
of novel class data or unseen language patterns, and (vi) support for uncertainty
quantification by source.

For a prototypical low K multi-class text classification task, we advise Deep
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Ensemble for solid in-domain performance and adequate distribution shift
robustness. In the case of memory or storage constraints, for example if your
base model already has high complexity, using (MC) Concrete Dropout will
provide calibration benefits both in and out-of-domain, albeit at a slightly larger
implementation cost. Similarly, to constrain computational complexity, it can
be more sensible to rely on a TextCNN ensemble (5*6M parameters) rather
than BERT (110M parameters). Considering time complexity, we have added
detailed compute, time and storage statistics for evaluated methods (Appendix
Appendix B.2). We would advise against using MC Dropout if the dropout
rate and weight regularization are not fine-tuned for the problem at hand. Our
benchmarking experiments demonstrate the unpredictable behavior of fixed-rate
MC Dropout, compared to Concrete Dropout, which we used as a proxy for
models with fine-tuned dropout ratio. This (mal)practice should be highlighted
as it has substantial impact on uncertainty estimation and robustness.

If K starts to increase, it warrants the effort to implement the Heteroscedastic
loss function, which will make the model more calibrated in-domain. Addition-
ally, it enables data uncertainty estimation for possible noisy ground truths,
which can happen more frequently with a larger number of classes.

If C grows larger, reliable epistemic uncertainty estimation becomes more
important, since the problem is made more complex given the larger number of
label combinations. Our evidence is slightly contradicting, with results obtained
on Reuters suggesting MC Concrete Dropout Ensemble and on AAPD warranting
Deep Ensemble. What should be clear, is that any form of ensembling is valuable
in multi-label classification to boost performance.

Under the expectation of distribution shift in the form of novel class data,
adding Concrete Dropout with stochastic sampling to an ensemble, MC Concrete
Dropout Ensemble, gives relatively strong benefits compared to a regular Deep
Ensemble. Ablations also show that less models (M) would be required to
reach similar performance. Generally, in-domain calibration inducing methods
are more robust when applied in the tested out-of-domain settings. For the
in-domain setting, the incorporation of data uncertainty incrementally improves
multi-class text classification. Ablation on NLP architectures (Section 3.5.4.2)
points to a deficiency of BERT for detecting novel class data and would similarly
be advised against in favour of simpler text classification architectures.

3.7 Additional Uncertainty Approaches

Next to the method combinations benchmarked in the main work, we
acknowledge two alternative approaches to uncertainty estimation with appealing
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properties such as training scalability and cheaper inference.

3.7.1 Stochastic Gradient MCMC Methods

There exists a wide range of sampling-based inference methods in the stochastic
gradient MCMC (SG-MCMC) literature, which have become increasingly more
tractable and empirically successful for uncertainty estimation. Specifically,
we re-implemented an exemplary approach [530], cyclical SG-MCMC (cSG-
MCMC), which uses a cosine cyclical learning rate schedule [292] to (i) better
explore the highly multimodal loss landscape and (ii) sample more efficiently
from the posterior. While this appealing approach reduces computational
complexity by only training a single model, we experienced that it is very tricky
to finetune with many hyperparameters interplaying. Instead of benchmarking
these methods and reporting scores over ranges of hyperparameters, we provide
a discussion of the perceived gap in theory and practice for this family of
uncertainty methods.

While the stochastic MCMC setting, estimating parameter updates from
minibatches, is computationally convenient, it induces several theoretical
challenges: i) minibatch noise introduced from small subsets of data [297],
ii) omission of the Metropolis-Hastings correction step provides fundamentally
biased estimates of posterior expectations [192], and iii) the suggested practice of
temperature tempering implies an approximation to the exact posterior instead
of proper convergence [122, 491].

Closer to practice, [530]’s methods have been successfully benchmarked [462, 491]
with reported performance on OOD detection for image classification datasets
comparable to or better than Deep Ensembles. An important caveat is that all
hyperparameters have been meticulously finetuned to the task at hand. This is
non-trivial given the additional specification of the number of cycles as guided
by a training budget, proportion of burn-in steps, and finding an appropriately
tempered posterior. The original work [530] mentions little dependence of results
on these modifications to the optimization procedure, yet we observed similar
to [122] “the complexity and fragility of hyper-parameter tuning, including the
learning rate schedule and those that govern the simulation of a second-order
Langevin dynamics”. Additionally, making combinations of uncertainty methods
with cSG-MCMC is non-trivial, since regularization in any form influences the
large scale curvature of the regions the optimizer explores.

With regards to re-implementation, we experienced issues with the indexing
of sparse gradient updates for the embedding lookup, an operation pervasive
in NLP architectures. Our original baseline models were trained with Adam
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optimizer, which consistently outscored any of our cSG-MCMC experiments
built upon SGD modifications.

There is an unmistakable complexity with how to sample appropriately from the
true posterior, as we now rely much on the training data, a “weak” regularizer,
on how to add noise for parameter space exploration. Concurrently, the
overparametrized regime is becoming commonplace in DL, especially in NLP
with the advent of Transformers, which calls for more sensible priors for more
than millions of parameters [453] and a better understanding of how output
functions are affected [107]. We believe stronger priors are available, not only
over parameters P (θ) but rather over functions P (fθ(x)) as specified by the
choice of architecture [192], which can make this family of methods an even
more competitive challenger.

3.7.2 Spectral-normalized Neural Gaussian Process

[283] propose with Spectral-normalized Neural Gaussian Process (SNGP) a
principled, scalable approach to uncertainty estimation for deep NNs. They
promote “distance awareness” as a necessary condition, which they accomplish
via spectral weight normalization and a GP output layer. Thanks to the
mean-field approximation [295] only a single forward pass suffices without MC
sampling to estimate the predictive distribution. Empirically, SNGP was shown
to outperform Deep Ensemble by some margin on OOD detection for both
image and text data. By demonstrating the relative importance of the decision
boundary of a single model fθ(y|x) versus averaging over multiple models, we
are inspired to analyze the combination of SNGP with alternate uncertainty
methods.

We have re-implemented SNGP using components of edward2 [454], Laplace
approximation, random feature GP and spectral normalization. In our
experience, the most crucial hyperparameters to finetune were the number
of inducing points (ι ≤ 1024) and spectral norm multiplier s. For the latter, we
follow the recommended tuning procedure to find an appropriate value in the
range {1, 2, 5, (10, 15)}, where we heuristically increased the search space.

For simplicity and computational reasons, we use TextCNN as base architecture.
However, in order to correctly apply spectral normalization to convolutional
filters [151], we had to re-implement TextCNN(v2) with 2D convolutions and
maxpooling. This in turn requires specifying a fixed sequence length in advance,
which invalidates directly comparing to the experiment results of Section 3.5. We
additionally re-train base models with TextCNN(v2) and combine SNGP with
our Regularized baseline (Reg), with MC Dropout (MCD), Concrete Dropout
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(CD) and Ensemble (Ens). For SNGP ensembles, we empirically selected s = 15
for the base model.

3.7.2.1 SNGP Results

First, we present critical difference analyses for in-domain classification (Fig.
3.18) and novelty detection (Fig. 3.19). Ensembling SNGP models, Deep
Ensemble SNGP, proves superior in-domain, followed by Concrete Dropout
Ensemble with and without SNGP. For novely detection, (MC) Deep Ensemble
is most successful with small differences between next high-ranked methods.

To our surprise, SNGP ranks quite low on the text classification tasks, although
in the original work it demonstrated OOD detection superior to Deep Ensemble.
In what follows, we analyze the novelty detection ranking of SNGP, specifically
per dataset and for multiple values of s.

Figure 3.18. CD diagram of NLL for base and SNGP method combinations with a
TextCNNv2 backbone.

Figure 3.19. CD diagram of AUROC for base and SNGP method combinations with
a TextCNNv2 backbone.

In order to zoom in on the relative ranking of SNGP (combination) methods,
we plot in Fig. 3.20 AUROC detection scores for datasets with interesting trend
changes. Overall, SNGP underperforms on CLINC-OOS, with the exception of
Deep Ensemble SNGP. For 20news, SNGP and Deep Ensemble SNGP rank
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high, although any additional regularization with SNGP worsens detection,
even as ensemble. For Reuters, we observe the exact opposite to 20news, with
SNGP reporting high detection scores only when regularization is added, e.g.
Regularized SNGP. Remarkably, this trend is reversed for the base model, with
Unregularized scoring particularly good.

Figure 3.20. AUROC scores over unique (abbreviated) methods per dataset. Error
bars are computed over multiple runs (5 seeds) for non-ensembles.

Finally, Fig. 3.21 reports on how novelty detection varies for different values
of the spectral normalization multiplier s. As the trend lines indicate, larger
values of s generally improve novelty detection, although AUROC varies more
(larger shading) between methods and datasets. This observation prompts us
to investigate the optimality of s per dataset. The right subplot shows that
spectral norm multipliers are very dataset-dependent and that searching further
than the originally suggested range can give great performance boosts.
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Figure 3.21. Left: AUROC scores (y-axis) over all datasets with unique runs plotted
for base (s = 0) and SNGP TextCNNv2 models with varying spectral normalization
multipliers (x-axis). Lines with shading indicate the trend observed between AUROC
and s. Right: AUROC mean and stddev over runs, sampling and datasets.

3.7.2.2 SNGP Discussion

While SNGP was reported to outperform Deep Ensemble in the original CLINC
OOD detection experiments [283], our results do not deliver the same ranking.
While investigating the interaction of SNGP with different uncertainty methods,
we observe the nontrivial role of spectral normalization, specifically setting the
norm multiplier s to an appropriate value. Additionally, we contribute the
analysis of the interplay with additional regularization mechanisms, which
was missing in the literature. The original work mentions that given an
approximation with the power iteration method, there is not a precise control
of the true spectral norm. Whereas spectral normalization keeps the magnitude
of updates to weights in check, Dropout regularization and weight decay may
rescale layers’ spectral norm in unexpected ways. We hope our experimentation
demonstrates the need for deeper understanding of how to combine multiple
regularization mechanisms and maintain a good spectral norm approximation
for effective posterior approximation.

3.8 Limitations

As with the majority of benchmarking literature in Bayesian Deep Learning,
the design of the current study is subject to limitations.

The first limitation concerns selection bias for text classification datasets. We
benchmark 6 prototypical text classification datasets covering binary, multi-
class, and multi-label classification by topic, sentiment and intent. The task
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domain of text classification is very large with additionally interesting variations
of (i) short social media or long business document text, (ii) hierarchical or
extreme multi-label text classification, and (iii) challenging task settings such
as fake news detection or reading comprehension. Since these present open sub-
problems in text classification we did not consider them for our benchmarking
study, yet encourage analysis for future research.

The second limitation is related to the representativeness of uncertainty
quantification methods. We specifically opted for scalable procedures which
have been increasingly gaining attention by practitioners. In total we derive 18
method combinations from two competing predictive uncertainty procedures, for
which we already resort to statistical summaries and rank-based evaluation to
present results. Due to computational constraints, retraining min. 5 ensembles
of size M = 5 per dataset and per experiment setup, we did not consider a
natural Bayesian extension of Deep Ensemble, Bayesian Ensemble [360] where
all weight initialization is shared around a single prior. Additionally, 3.7 includes
preliminary experiments with two new uncertainty approaches, cyclical SG-
MCMC [530] and SNGP [283], which are less practical to benchmark, but bring
promising ideas for improved, high-quality uncertainty estimation.

Finally, evaluating the quality of uncertainty quantification is an open problem
in BDL, typically approached with proxy setups, as is the case in our benchmark
with a focus on novelty detection and cross-domain generalization. Section 3.3.5
presents a nuanced view of this evaluation practice. In addition, evaluating
reliable uncertainty estimation in NLP as opposed to other modalities is
complicated due to the discrete nature of language. Ideally, we would have
extended our benchmark with more probing setups covering situations where
we expect predictive uncertainty to be crucial, for instance, when dealing with
noisy supervision/inputs or low data regimes.

3.9 Chapter Conclusion

In general, while seeking to optimize for a well-approximated (whether or not
Bayesian) posterior, current predictive uncertainty methods are imperfect and
very often practically not useful. However, the need for practical and scalable
solutions to both incorporating and evaluating the quality of uncertainty is
huge, as it is a prerequisite to reliable automation. Uncertainty quantification
requires modality to task-specific benchmarking to help practitioners safely rely
on them and inform researchers to prioritize the right approaches.

In this work, we have presented empirical evidence from benchmarking
uncertainty methods in text classification, contributing and calling attention
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to the under-explored study of uncertainty quality and model robustness in
realistic NLP data distributions.

Interestingly, we find that general behavior of predictive uncertainty methods
does not hold over different datasets, with method performance often tied to the
text classification task. Overall, we cannot discern a clear winning predictive
uncertainty procedure, yet some methods clearly perform worse. Although a
universal methodology is absent, we observe that there are specific correlations
between a method’s performance and the problem setting representing text
classification task characteristics, formulated in practical take-homes.

An important contribution is the proposed novel combinations of predictive
uncertainty methods. Our benchmarking experiments have revealed MC
Concrete Dropout Ensemble to be overall superior at novel class and out-of-
domain detection in text classification, even with a lower ensemble size. Most
notably, it outperforms Deep Ensemble which has leading performance in recent
BDL surveys on image data. We linked complementary benefits of hybrid
uncertainty estimation methods to ongoing research on NN diversity in function-
space and have provided more evidence in support of hybrid approaches. We
have determined in an ablation study thatM , ensemble size, T , number of Monte
Carlo samples, and p, dropout probability rate, are crucial hyperparameters
to take into consideration for improved robustness and uncertainty estimation.
Finally, we experimentally validated predictive uncertainty methods on real-
world text classification tasks, including multi-label targets, coupling our
hypotheses and results to the NLP problem space. Crucially, we found an
important deficiency of BERT, compared to a more simple NLP architecture
TextCNN, with respect to novel class robustness, limiting the applicability
of transfer learning from pretrained Transformers under the expectation of
uncertainty and novel class instances.

To further improve calibration and robustness in the text classification domain,
and by extension uncertainty in NLP, we need to better understand what
will make existing or novel uncertainty estimation techniques successful. This
requires the development of well-motivated tooling and protocols to reliably
assess the quality and fidelity of posterior approximation. Generally, the role
of priors in increasingly larger models deserves more attention. While our
work focused on posterior geometry and weight-based priors in the form of
regularization, stronger, more meaningful functional priors exist, which should
be exploited to encourage desirable predictive behavior such as robustness
to specific distribution shifts. Particularly for NLP, more focused research
is required into what aspects —language data characteristics, inherent task
difficulty or ambiguity, architecture design, learned representations, objectives,
and effective parameter usage— render NLP pipelines more complex to imbue
with reliable uncertainty and guarantee future out-of-distribution robustness.
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Chapter 4

Beyond Document Page
Classification: Design,
Datasets, and Challenges

The contents of this chapter comes from a publication [470] that was presented
as an oral presentation at WACV 2024 ( 53

2042 ≈ 2.5%):

Jordy Van Landeghem, Sanket Biswas, Matthew Blaschko, and Marie-Francine
Moens. Beyond Document Page Classification: Design, Datasets, and Challenges.
In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2962–2972, 2024

Disclosing the work done:

I conceptualized the work, implemented the experiments, and wrote the
manuscript. Sanket Biswas helped with related work and polishing the writing,
and we acknowledge help in data collection from Ruben Perez Tito and Stefan
Larson.

This chapter focuses on moving beyond the (self-imposed) restrictions of page
limits, and exploring the full potential of DL for document processing. A major
highlight is the need to bring document classification benchmarking closer to
real-world applications, both in the nature of data tested (X: multi-channel,
multipaged, multi-industry; Y : class distributions and label set variety) and

94
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in classification tasks considered (f : multipage document, page stream, and
document bundle classification, ...). We start by introducing the problem of
document classification (DC) and its importance in the larger scope of document
understanding, for which we emphasize visually-rich documents, adopting the
acronym VDU instead. Moreover, we identify the lack of public multipage
document classification datasets, formalize different classification tasks arising
in application scenarios, and motivate the value of targeting efficient multipage
document representations.

An experimental study on proposed multipage document classification datasets
demonstrates that current benchmarks have become irrelevant and need to be
updated to evaluate complete documents, as they naturally occur in practice.
This reality check also calls for more mature evaluation methodologies, covering
calibration evaluation, inference complexity (time-memory), and a range of
realistic distribution shifts (e.g., born-digital vs. scanning noise, shifting page
order). This chapter ends on a hopeful note by recommending concrete avenues
for future improvements, pertaining to document dataset construction efforts
and suggested methodologies.

The work in this chapter was the trigger for the next chapter (Chapter 5),
in which we propose a new, comprehensive DU benchmark, DUDE, that is
more aligned with real-world applications and practices, naturally including
multipage documents that satisfy many of this chapter’s recommendations.

Figure 4.1. Overview of different classification tasks that can be found in real-world
VDU applications, that are not sufficiently addressed in DC research. The classification
task notation and definitions are introduced in Section 4.2.
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4.1 Introduction

Visual Document Understanding (VDU) comprises a large set of skills, including
the ability to holistically process both textual and visual components structured
according to rich semantic layouts. The majority of efforts are directed toward
the application-directed tasks of classification and extraction of key information
(KIE) in visually-rich documents (VRDs). Document classification (DC) is
a fundamental step in any industrial VDU pipeline as it assigns a semantically
meaningful category, routes a document for further processing (towards KIE,
fraud checking), or flags incomplete (e.g., missing scans) or irrelevant documents
(e.g., recipe cookbook in a loan application).

Documents are intrinsically multipaged, explaining (partly) why PDF is one of
the most popular universal document file formats.1 While DC in information
management workflows typically involves multipage VRDs, current public
datasets [165, 233] only support single-page images and constitute too simplified
benchmarks for evaluating fundamental progress in DC.

With the advent of deep learning, the VDU field has shifted from region-based
analysis to whole-page image analysis. This shift led to substantial improvements
in processing document images with more complex layout variability, exposing
the limitations of template-based methods. Our work highlights the opportunity
and necessity of moving beyond the page limits toward evaluation on complete
document inputs, as they prevalently occur (multipage documents, bundles,
page streams, and splits) across various practical scenarios within real-world DC
applications, demonstrated in Figure 4.1.

The practical task of long document classification [372] is largely underexplored
due to challenges in computation and how to efficiently represent large
multimodal inputs. Additionally, the proximity to applications involves a
larger community for conducting research, yet innovations may happen in
isolation or are kept back as intellectual property, lacking evaluation on
public benchmarks [147, 148], consequently hindering reproducibility and fair
comparisons.

Existing DC methodology is limited to single-page images, and independently and
identically distributed (i.i.d.) settings. We propose an improved methodology
that extends its scope to multipage images and non-i.i.d. settings. We also reflect
on evaluation practices and put forward more mature evaluation protocols. To
better capture the complexity of real-world document handling, we align DC
benchmarking closer to practical applications and task formulations.

1PDF is the 2nd most popular file format on the web (after HTML and XHTML) following
detected MIME types in CommonCrawl.

https://www.family-action.org.uk/content/uploads/2019/07/meals-more-recipes.pdf
https://commoncrawl.github.io/cc-crawl-statistics/plots/mimetypes
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Our key contributions can be summarized as follows:

• We have redesigned and formalized multipage DC scenarios to align
fragmented definitions and practices.

• We construct and share two novel datasets RVL-CDIP_MP2 and
RVL-CDIP-N_MP3 to the community for evaluating multipage DC.

• We conduct a comprehensive analysis of the novel datasets with different
experimental strategies, observing the promise from best-case analysis
(+6% absolute accuracy) by targeting multipage document representations
and inference.

• We overview challenges stalling DC progress, giving concrete guidelines to
improve and increase dataset construction efforts.

4.2 Problem Formulation

We propose to use formal definitions to better align DC research with real-world
document distributions and practices. This will help to standardize DC practices
and make it easier to compare different methods.
Let X denote a space of documents, and let Y denote the output space as a finite
set of discrete labels. Document page classification is a prototypical instance of
classification [472], where the goal is to learn an estimator f : X → Y using N
supervised input-output pairs (X,Y ) ∈ X × Y drawn i.i.d. from an unknown
joint distribution P (X,Y ).

A page p is a natural classification input that consists of an image v ∈ RQ×H×W

(number of channels, height, and width, respectively) with T word tokens {ti}Ti=1
organized according to a layout structure

{(
x1
i , y

1
i , x

2
i , y

2
i

)}T
i=1, typically referred

to as bounding boxes, either coming from Optical Character Recognition (OCR)
or natively encoded.

Note that in practical business settings, VRDs are presented at inference time
to a production VDU system in different forms:

I. Single page (often scanned or photographed)
II. Single document
III. Multiple documents
IV. Multiple pages (often bulk-scanned to a single PDF)
V. Single image with multiple localized pages
2huggingface.co/datasets/bdpc/rvl_cdip_mp
3huggingface.co/datasets/bdpc/rvl_cdip_n_mp

huggingface.co/datasets/bdpc/rvl_cdip_mp
huggingface.co/datasets/bdpc/rvl_cdip_n_mp
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Classification tasks In a unification attempt, we formalize the different
classification inputs and tasks that arise in practical scenarios, as visualized in
Figure 4.1.

Definition 9 [Page Classification]. (I) A page (as defined above) is
categorized with a single category. When only considering the visual modality,
the literature refers to it as ‘document image classification’ [165]. An estimator
for page classification with the input dimensionality (Xp) relative to a page
(viz., number of channels, height, and width) is defined as:

fp : Xp → Y,

where Y = [C] for C mutually exclusive categories.
(4.1)

Definition 10 [Document Classification]. (II) A document d contains a
fixed number of L ∈ [1,∞) pages, which do not necessarily have the same
dimensions (height and width). Albeit a design choice, the input dimensionality
is normalized across pages (e.g., 3 × 224 × 224). Assuming a fixed input
dimensionality (Xd) relative to a document (L × Q × H ×W ), a document
classifier is defined as:

fd : Xd → Y,

where Y = [K] for K mutually exclusive categories.
(4.2)

Note also the difference in label space between the two previous classification
tasks, which can have some overlap for document types that are uniquely
identifiable from a single page (e.g., an accident statement form).

Definition 11 [Document Bundle Classification]. (III) A bundle b can
contain a variable number of B documents, each with a potentially different
amount of L pages. A bundle classifier models a sequence classification problem
over multiple documents:

fb : Xb → Y, where Y is a product space of B documents,

Y = Y1 × ...× YB , with {Yj = [K] : j ∈ [B]}.
(4.3)

Definition 12 [Document Stream Classification]. (IV) A page stream s
is similar to a document in terms of input (number of pages L), albeit typically
more varied in content and page formats. Page streams can implicitly contain
many different documents, with pages not necessarily contiguous or even in the

https://cartraveldocs.com/wpinstall/wp-content/uploads/2021/01/European-Accident-Statement-details.jpg
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right order, as illustrated in Figure 4.1.

fs : Xd → Y, where Y is a product space of L pages,

Y = Y1 × ...× YL, with {Yj = [C] : j ∈ [L]}. (4.4)

A very concrete example of how the label sets [C] and [K] can differ is in a
loan application use-case where national registry proofs need to be sent: If two
pages are sent with the front and back of the ID-card, fs requires two labels
(id_front, id_back), whereas fd requires a single document label (id_card).

A critical note is due to differentiate page stream segmentation (PSS) [128, 328,
494] and page stream classification as defined above (fs). PSS treats a page
stream as a binary classification task to identify document boundaries, without
classifying the identified documents afterward. fs considers the task in one
stage where C is constructed in a way to send atomic units such as a wage slip
in Figure 4.1 for individual downstream processing or it can be combined to
a single document label from [K] based on assigned page labels. Two-stage
processing is possible by applying PSS as an instance of a fs classifier with
[C] = {0, 1} where 1 indicates a document boundary, followed by fd.

Definition 13 [Page Splitting]. (V) A multipage image m contains multiple
page objects of similar types which can have multiple orientations, page
dimensions, and often physical overlap from poor scanning [132]. A standard
example involves multiple receipts to be analyzed for reclaiming VAT. While a
complete approach will consist of localizing pages (using edge/corner detection,
object detection, or instance segmentation) and identifying page types, we will
only focus on the latter. For instance, multipage splitting can be defined as a
preliminary check on how many page types are present in a multipage image
(with input dimensionality similar to a single page p):

fm : Xp → Y, where Y = ZC . (4.5)

Payment proofs such as tickets and receipts more often are packed together
due to their compactly printed sizes, which would require splitting the unique
documents from within a page to send individually for further processing.
Following the national registry example. another rare yet “economical" variation
for fd occurs when a single page contains both the front and back of the ID card
stitched together. These edge cases (rightmost example in Figure 4.1) should
be dealt with on a case-by-case basis for how to set up [K] (e.g., specific label:
multi-tickets).

https://d3i71xaburhd42.cloudfront.net/b3c3afa2e9b13d934a79b4fbe2759ee431b8e77b/1-Figure1-1.png
https://payrollhero.ph/ph/img/product-payslip.jpg
https://www.pugetsound.edu/sites/default/files/inline-images/BDPC/8088_scannedReceiptsExample_0.jpg
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The formalisms defined above establishes a taxonomy of DC tasks, which will
be retaken in the discussion of challenges to align DC research and applications
(Section 4.5).

4.3 Balancing Research & Applications

Having established a taxonomy, we further sketch the role of DC in the larger
scope of VDU, both in the applications and research context. We point to related
VDU benchmarks and describe current DC datasets with their relevant (or missing)
properties using the task formalizations. Next, we link to related initiatives
in dataset construction and calls for reflection on DU practices. Finally, we
introduce the curated DC datasets to support multipage DC (fd) benchmarking,
which will be used in a further experimental study.

General Benchmarking in VDU: In any industrial application context where
information transfer and inbound communication services are an important
part of the day-to-day processes, a vast number of documents have to be
processed. To provide customers with the expected service levels (in terms
of speed, convenience, and correctness) a lot of time and resources are spent
on categorizing these documents and extracting crucial information. Complex
business use cases (such as consumer lending, insurance claims, real estate
purchases, and expenditure) involve processing bundles of different documents
that clients send via any communication channel. For example, obtaining a loan
typically entails sending the following documents to prove solvency: a number
of monthly pay stubs, bank statements, tax forms, and national registry proofs.
Furthermore, not all documents are born-digital (BD), and as an artifact of the
communication channel (bulk scans/photographs, digitization of physical mail),
a single client communication can contain an arbitrary amount of document
page images in an unknown order, requiring an fs classifier. Figure 4.1 provides
an overview of the different DC tasks that arise in application scenarios, which
are scarcely covered by DC research benchmarks (see Table 4.2). As RVL-CDIP
is the only large-scale non-synthetic DC benchmark, we discuss it in more detail,
other dataset descriptions can be found in Supplementary.

Current state-of-the-art DU research based approaches [15, 187, 259] leverage the
“pretrain and fine-tune" procedure that performs significantly well on popular
DU benchmarks [165, 188, 197, 544] (see Table 4.1). However, their performance
drops significantly when exposed to real-world business use cases mainly due
to the following reasons: (1) The models are limited to modeling page-level
context due to heavy compute requirements (e.g., quadratic complexity of

https://www.forbes.com/advisor/wp-content/uploads/2022/10/image1-7.png
https://prodblobcdn.azureedge.net/wp/webp/novelty-bank-statement.webp
https://images.sampletemplates.com/wp-content/uploads/2016/10/20144630/Income-Tax-Form-Sample.jpg
https://www.tradingstandards.uk/media/images/BDPC/news--policy/press-office/yoticitizencard.jpg?width=390
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Dataset Size Data Source Domain Task OCR Layout
IIT-CDIP [252] 35.5M UCSF-IDL Industry Pretrain 7 7
RVL-CDIP [165] 400K UCSF-IDL Industry DC 7 7
RVL-CDIP-N [241] 1K Document Cloud Industry DC 7 7
TAB [328] 44.8K UCSF-IDL Industry DC 7 7
FUNSD [197] 199 UCSF-IDL Industry KIE 3 7
SP-DocVQA [308] 12K UCSF-IDL Industry QA 3 7
OCR-IDL [40] 26M UCSF-IDL Industry Pretrain 3 7
FinTabNet [543] 89.7K Annual Reports S&P Finance TSR 7 3
Kleister-NDA [432] 3.2K EDGAR US NDAs KIE 3 7
Kleister-Charity [432] 61.6K UK Charity Commission Legal KIE 3 7
DeepForm [435] 20K FCC Inspection Forms broadcast KIE 3 7
TAT-QA [550] 2.8K Open WorldBank Finance QA 3 7
PubLayNet [544] 360K PubMed Central Scientific DLA 7 3
DocBank [261] 500K arxiv Scientific DLA 3 3
PubTabNet [545] 568K PubMed Central Scientific TSR 7 3
DUDE [468] 40K Mixed Multi-domain QA 3 7
Docile [422] 106K EDGAR & synthetic Industry KIE 3 7
CC-PDF [460] 1.1M Common-Crawl (2010-22) Multi-domain Pretrain 7 7

Table 4.1. DU Benchmarks with their significant data sources and properties.
Acronyms for tasks DC: Document Classification DLA: Document Layout Analysis
KIE: Key Information Extraction QA: Question Answering TSR: Table Structure
Recognition

Dataset Purpose #d #p |Y| Language Color depth
NIST [98] fs 5590 20 English Grayscale

MARG [290] fs 1553 2 English RGB
Tobacco-800 [553] fs 800 2 English Grayscale

TAB [328] fs 44.8K 2 English Grayscale
Tobacco-3482 [232] fp 3482 10 English Grayscale
RVL-CDIP [165] pretraining, fp 400K 16 English Grayscale

RVL-CDIP-N [241] fp, OOD 1002 16 English RGB
RVL-CDIP-O [241] fp, OOD 3415 1 English/Mixed RGB

RVL-CDIP_MP fd ±400K E[L] = 5 16 English Grayscale
RVL-CDIP-N_MP fd, OOD 1002 E[L] = 10 16 English RGB

Table 4.2. Statistical Comparison of public and proposed extended multipage DC
datasets. OOD refers to out-of-distribution detection. #d and #p refer to number of
documents or pages, respectively. For the novel MP datasets, we report the average
number of pages.

self-attention [473]), effectively treating each document page as conditionally
independent and potentially missing out on essential classification cues. (2) The
methods are heavily reliant on the quality of OCR engines to extract spatial local
information (i.e. mostly at word level) suitable to solve downstream benchmark
tasks; but fail to generalize well on business documents. (3) Existing datasets
used for pretraining [165, 252] are different in terms of domain, content, and
visual appearance from many downstream DC tasks (detailed in Section 4.5.3).
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Therefore, it can be challenging for industry practitioners to choose a specific
model to fine-tune for the DC use cases and task specifics that they commonly
encounter.

RVL-CDIP The Ryerson Vision Lab Complex Document Information
Processing [165] dataset used the original IIT-CDIP (The Illinois Institute
of Technology dataset for Complex Document Information Processing) [252]
metadata to create a new dataset for document classification. It was created
as the equivalent of ImageNet in the VDU field, which invited a lot of multi-
community (Computer Vision, NLP) efforts to solve this dataset. It consists of
low-resolution, scanned documents belonging to one of 16 classes such as letter,
form, email, invoice.

Proposed Datasets RVL-CDIP_MP is our first contribution to retrieve the
original documents of the IIT-CDIP test collection which were used to create
RVL-CDIP. Some PDFs or encoded images were corrupt, which explains that
we have around 500 fewer instances. By leveraging metadata from OCR-IDL
[40], we matched the original identifiers from IIT-CDIP and retrieved them
from IDL using a conversion. However, the same caveats for RVL-CDIP apply.

RVL-CDIP_MP-N can serve its original goal as a covariate shift test set, now for
multipage document classification. We were able to retrieve the original full
documents from DocumentCloud and Web Search. As no existing large-scale
datasets include granular page-level labeling (in terms of [C]) for multipage
documents, we could not create a benchmark for evaluating fs. Appendix B
points to visualizations from the proposed datasets.

Related Initiatives General benchmarking challenges have driven the VDU
research community to set the seed for initiatives to create its own document-
oriented “ImageNet” [399] challenge over which multiple long-term grand
challenges can be defined (deepdoc2022, scaldoc2023). In another task paradigm,
DocuVQA, there have been efforts in the same spirit to redirect focus to
multipage documents [451, 467]. For the task of KIE, [424] launched a similar call
for practical document benchmarks closer to real-world applications. While these
initiatives demonstrate a similar-looking future direction, our contribution goes
beyond introducing novel datasets and seeks to guide the complete methodology
of DC benchmarking.

http://cvit.iiit.ac.in/deepdoc2022/
http://cvit.iiit.ac.in/scaldoc2023/


EXPERIMENTAL STUDY 103

4.4 Experimental Study

To classify a multipage document, one might ask the question “Why not just
predict based on the first page? What would be the gain of processing all
pages? What baseline inference strategies can be applied to classify a multipage
document?". This prompted us to put these assumptions to the test in a small
motivating study4.

As current public datasets only support page classification, we have extended
some existing DC datasets to already enable testing a slightly more realistic, yet
more complex document classification scenario (fd).

We have reconstructed the original PDF data of the DC datasets in Section 4.3.
The goal of this experiment is to tease some issues and strategies when naively
scaling beyond page-level DC. Our baseline of choice is the document foundation
model DiT-Base [259], which as a visual-only fp is competitive with more
compute-intensive multimodal, OCR-based pipelines [15, 187, 443].

Inference Strategy Scope
sample first page

second page
last page

sequence max confidence page
soft voting page
hard voting page

grid grid document
document (not tested) document

Table 4.3. Tested inference methods to classify multipaged documents and simulate
a true document classifier fd. Scope refers to the independence assumption taken at
inference time.

Table 4.3 overviews some straightforward inference strategies. Consider the
simplest inference strategy is to sample a given page with index l ∈ [L] (or in
our case {1, 2, L− 1}) from ŷl = [fp(x)]l. The sequence strategies mainly differ
in how the final prediction ŷ is obtained from predictions per page, assuming a
probabilistic classifier f̃p : Xp → [0, 1]K .

MaxConf(x, y) = argmax
l∈[L]
k∈[K]

[f̃p(x, y)]lk (4.6)

4Code provided at: https://huggingface.co/bdpc/src

https://huggingface.co/bdpc/src
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SoftConf(x, y) = argmax
k∈[K]

L∑
l=1

[f̃p(x, y)]l (4.7)

HardVote(x, y) = argmax
k∈[K]

L∑
l=1

eŷl , (4.8)

with e a one-hot vector of size K. The grid strategy is intuitive as we tile
all page images in an equal-sized grid that trades off the resolution to jointly
consume all document pages. While results in this experiment with fairly low
grid resolution (224 x 224) are poor, variations (with aspect-preserving [247] or
layout density-based scaling) deserve to be further explored.

Strategy Acc↑ F1↑ F1M ↑ ECE↓ AURC↓
fp$ [259] 93.345 93.351 93.335 0.075 0.010
first 91.291 91.286 91.271 0.073 0.014
second 87.295 87.305 87.277 0.070 0.029
last 85.091 85.060 85.028 0.072 0.038
MaxConf 91.407 91.453 91.344 0.124 0.006
SoftVote 91.220 91.185 91.236 0.134 0.004
HardVote 85.995 86.182 85.781 0.085 0.018
grid 72.642 72.045 73.266 0.109 0.042

Table 4.4. Base classification accuracy of DiT-base [259] (finetuned on RVL-CDIP)
evaluated on the test set of RVL-CDIP_MP per baseline fd strategy. Best results per
metric are boldfaced. $ refers to our reproduction of results.

Strategy Acc↑ F1↑ F1M ↑ ECE↓ AURC↓
fp [241] 78.643 81.947 60.564 0.105 0.076
first 78.760 75.316 60.801 0.144 0.025
second 64.939 58.741 50.773 0.132 0.071
last 64.228 58.192 48.859 0.128 0.074
MaxConf 76.321 72.855 57.470 0.180 0.042
SoftVote 73.984 69.163 56.486 0.183 0.039
HardVote 67.480 63.188 52.235 0.110 0.088
grid 47.755 40.645 38.584 0.102 0.170

Table 4.5. Base classification accuracy of DiT-base [259] (finetuned on RVL-CDIP)
evaluated on the test set of RVL-CDIP_N_MP per baseline fd strategy. Best results per
metric are boldfaced.

Following similar calls in the VDU literature [468] to establish calibration and
confidence ranking as default evaluation metrics, we include Expected Calibra-
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tion Error (ECE) [156, 332, 340] to evaluate top-1 prediction miscalibration
and Area-Under-Risk-Coverage-Curve (AURC) [138, 193] to measure selective
(proportion of test set%) accuracy (cf. Section 2.2.3).

Results in Tables 4.4 and 4.5 demonstrate that classifying by only the first page
is a solid strategy, with performance dropping when considering only later pages.
Maximum confidence and soft voting require L (pages) times more processing,
yet attain similar performance as the best single-page prediction. However,
this could be attributed to two factors: i) dataset creation bias since [165]
constructed RVL-CDIP from a page of each original .tiff file, for which the label
was kept if it belonged to one of the 16 categories, whereas RVL-CDIP-N [241]
consistently chose the first-page; ii) documents are fashioned in a summary-
detail or top-down content structure over pages. To confirm the validity of the
latter hypothesis, more robust experiments on more fine-grained labeled DC are
needed.

The results from Table 4.4 and Table 4.5 can be interpreted as an upper
bound (i.i.d.) and a loose lower bound (non-i.i.d., yet related), respectively.
For the former, MaxConf is the most accurate, yet compared to SoftVote has
worse AURC, potentially making SoftVote a better candidate for industry use
where controlled risk is more valued. While this trend is not reproduced in
RVL-CDIP_N_MP, it can be explained by the more consistent first-page labeling,
adding distracting classification cues from later pages.

Dataset Strategy Acc↑ ∆
RVL-CDIP_MP first+second(∗) 93.795 2.504

first+last(∗) 93.675 2.384
second+last(∗) 89.709 −1.583
first+second/last(∗) 94.454 3.163

RVL-CDIP_N_MP first+second(∗) 83.638 4.878
first+last(∗) 83.130 4.370
second+last(∗) 71.545 −7.215
first+second/last(∗) 84.553 5.793

Table 4.6. Best-case classification accuracy indicated with (∗) when combining
’knowledge’ over different pages. ∆ refers to the absolute difference with the first page
only.

To answer what can be gained from processing a multipage document in a single
shot, Table 4.6 reports a best-case error analysis, where a page prediction is
counted as correct if the model would have had access to the other pages. This
is calculated by using a bit-wise OR operation between the one-hot vectors
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(I[y == ŷ]) expressing correctness for each strategy model. As a proof of concept,
this shows that targeting multipage document representations and inference is
a promising avenue to improve DC.

4.5 Challenges and Guidelines

Following the introduced task formalizations of Section 4.2, we claim that the
distribution on which document classification is currently evaluated publicly
and the real-world distributions have heavily diverged. Additionally, our
experimental validation on the novel datasets demonstrated the potential
of multipage DC, empirically reinforcing our call to action on improving
DC methodologies. Let PA(X,Y ) and PR(X,Y ) denote those two distinct
distributions, real-world applications and research respectively. Further, we will
characterize the specific divergences with concrete examples and suggestions for
better alignment.

4.5.1 Divergence of Tasks: f

The challenge of directly processing multipaged documents is typically avoided
by current DC models which only support single-page images [15, 153, 187, 216,
247, 263, 371, 443]. Whenever a new DU model innovation happens, the impact
for document classification is publicly only measured on the first task scenario
(e.g., fp on RVL-CDIP), whereas production DU systems more often need to
deal with the other settings (II,III,IV,V) in Figure 4.1. Moving beyond the
limited page image context will test models’ ability to sieve through potentially
redundant and noisy signals, as the classification can be dependent on very
local cues such as a single title on the first page or the presence of signatures on
the last page. Without any datasets to test this ability, we also cannot blindly
assume that we can simply scale fp classifiers to take in more context or that
aggregating isolated predictions over single pages is a future-proof (performant
and efficient) strategy, as our experiments have shown.

While p is a natural processing unit for humans, acquiring supervised annotations
for every single page can be more expensive than attaching a single content-
based label (from [K]) to a multipage document. However, fine-grained labeling
with fs could allow for more targeted and constrained KIE, as knowing a
certain page l has label yl = id_front ∈ [C] will allow you to focus on specific
entities such as national registry number, date/place of birth. Ultimately, these
classification task formulations can also help one consider how to set up f
directly and annotate document inputs, depending on the DC use-case.
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4.5.2 Divergence of Label Space: Y

Current benchmarks often use simplified label sets that are difficult to reconcile
with industry requirements. While RVL-CDIP is the de facto standard for
measuring performance on fp DC, recent research [242] has revealed several
undesirable characteristics. It supports only 16 labels that pertain to a limited
yet generic subset of business documents, which is far from the 1K classes in
ImageNet on whose image it was modeled. Real-world DC use cases typically
support a richer number of classes (K ∼ 50-400). RVL-CDIP suffers from
substantial label noise, estimated to be higher than current state-the-art fp
error rates (see [242] for a detailed analysis) which are overfit to noise. Due
to the absence of original labeling guidelines, the labels in RVL-CDIP can be
ambiguous, containing disparate subtypes (e.g., business cards in the resume
category), and inconsistencies between classes (cheques present in both budget
and invoice). Other errors include (near-)duplicates causing substantial overlap
between train and test distributions, corrupt documents, and plain mislabeling.
However, many common CV benchmarks are plagued by similar issues [31] and
would benefit from relabeling campaigns [519] to maintain their relevance.

Considering the above, multi-label classification (not covered explicitly in
Section 4.5.1) could be a solution to resolve label ambiguities, yet this requires
absolute consistency in label assignments, which when lacking introduces even
more label noise. The highest labeling quality could arise from consistent
labeling at the page level and hierarchically aggregating page labels (C → K),
yet granular annotations are more expensive to obtain. Alternatively, it may
be better to follow the mutually exclusive and collectively exhaustive (MECE)
principle [72] to construct label sets at the document level.

Finally, an overlooked aspect of current benchmarks is that label sets [K] can
be constructed based on some business logic, where a very local cue can lead
to a class assignment such as some checked box on page 26. Admittedly, this
does conflate the tasks of document object detection, KIE, and DC within a
single label set. However, the current focus on classes with plenty of evidence
across a document, with more global classification cues, should be balanced
with document types that rely on local cues.

Taking the above issues into account, the community should work together
towards developing more effective and realistic DC datasets that better align
with the needs of industry practitioners. While tackling the challenge of Y
divergence was out-of-scope for the contributed datasets, the next Subsection
gives systematic recommendations for obtaining better future DC benchmarks.
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Figure 4.2. Divergence of input data. The first image is an example from DC
benchmark RVL-CDIP [165], the second one from Docile [422] for KIE, while the
third one comes from Info-VQA [310], illustrating the visual-layout richness of modern
VRDs vs. the monotonicity of most DC document data.

4.5.3 Divergence of Input Data: X

We offer suggestions for future benchmark construction efforts such that they
take into account what properties are currently unaccounted for, organically
improving on our first pursuit towards multipage DC benchmarking.

We argue that current VDU benchmarks fail to account for many real-world
document data complexities: multiple pages, the distinction between born-native,
(mobile) scanned documents, accounting for differences in quality, orientation,
and resolution. Additionally, the UCSF Industry Document Library (and
in consequence all DC datasets drawn from this source) contains mostly old
(estimated period 1950s to 2002), type-written black and white documents, while
in reality, modern documents can have multiple channels, colors, and (embedded)
fonts varying in size, typeface, typography. Recently, there have been efforts to
collect more modern VRD benchmarks for tasks such as DocVQA [310, 468],
KIE [422], DLA [362]. Modern VRDs contain visual artifacts such as logos,
checkboxes, barcodes, and QR codes; geometric elements such as rectangles,
arrows, charts, diagrams, ..., all of which are not frequently encountered with the
same variety in current benchmarks. Future DC benchmarks should incorporate
modern VRDs to bring more diversity and variability in input data.

When developing DU models, it is therefore important to consider the role of
vision, language, and layout and how these are connected to the classification
task. For example, current datasets are based on tobacco industry documents
containing very domain-specific language, which a less robust classifier can overfit
(e.g., the spurious cue of a particular cigarette brand indicates an invoice). We
highlight that document data can be multi-lingual, and code-switching is fairly
common in document-based communications. For instance, an email may be in
one language while the attachment is in another language.
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In summary, future benchmarks must contain multipage, multi-type, multi-
industry (e.g., retail vs. medical invoice), multi-lingual documents with a wide
range of document data complexities to build and test generic DC systems.

The community should explore potential solutions to the lack of adequate
datasets for testing DC models such as i) leveraging public document collections,
ii) synthetic generation, and iii) anonymization.

Public document collections: There are increasingly more (non-profit)
organizations (e.g., DocumentCloud), governments (SEC EDGAR), financial
institutions (World Bank Documents & Reports), and charities (Guidestar) that
make business-related documents publicly available for transparency in their
operations and archival/research purposes. These collections provide datasets
that are closer to real-world scenarios. However, these documents are typically
unlabelled, although annotations could be crowd-sourced through combined
funding from interested parties. Since most document data sources restrict
automated crawling or document scraping, future dataset constructions will
require some cooperation and creativity, whilst fulfilling licensing, ethical, and
legal requirements. A specific highlighted initiative is CC-PDF [460], which
collected modern, multi-lingual VRDs from CommonCrawl for future use.

Data synthesis: This alternative was suggested by prior work on KIE [30, 424]
and DLA [37] for generating business and scientific documents. [422] followed up
on this, delivering a large-scale KIE dataset with 6K real documents annotated
and 100K synthetic examples. However, synthetic generation can be challenging
to simulate real-world documents with similar data and classification complexity.

Anonymization can be a viable option to construct a DC dataset without
compromising ethical guidelines and privacy regulations. This process involves
removing, masking, replacing, or obfuscating data so that document content
can no longer be attributed to an individual or entity. For example, one should
remove names, addresses, and identifying information such as social security
numbers or replace it with a textual tag ([social-security-number]) or similar
pattern (e.g., Faker). While this process is not viable for creating KIE datasets,
KIE can play a big role in semi-automatically anonymizing documents [143, 366].
Companies may be hesitant to make document collections public due to concerns
about privacy, confidentiality and GDPR compliance. While anonymization can
be an effective method, it should be approached with caution as potential risks
of re-identification can make someone with originally good intentions legally
liable. A potential side-step can be investing in privacy-preserving federated

https://www.documentcloud.org/home
https://www.sec.gov/edgar/search-and-access
https://documents.worldbank.org/en/publication/documents-reports
https://www.guidestar.org/
https://faker.readthedocs.io/en/master/
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learning (e.g., PFL-DocVQA) to allow access to private industry document
data.

4.5.4 Maturity of Evaluation Methodology

Most DC models are evaluated using predictive performance metrics such as
accuracy, precision-recall, and F1-score on i.i.d. test sets. However, in user-facing
applications, calibration can be as important as accuracy [156, 332, 340]. Even
more so, when the confidence estimation of a DC is used to triage predictions to
either an automated flow or manual processing by a human. Once a DC is in
production, the i.i.d. assumption will start to break, which would recommend
a priori testing of robustness against various sources of noise (OCR, subtle
template changes, wording or language variations, ...) and expected distribution
shifts (born-digital-scanning artifacts, shifting page order, page copies, irrelevant
or out-of-scope documents, novel document classes, concept drift, ...).

Nevertheless, we observe only a few applications in DC (only reported on fp) of
more mature evaluation protocols [193] beyond predictive performance. Notable
exceptions include covariate shift detection from document image augmentations
[304], sub-class shift and generalization in [241, RVL-CDIP-N], out-of-
distribution detection [241, RVL-CDIP-O], and cross-domain generalization
[23, (RVL-CDIP ↔ Tobacco-3482)]. However, the results on the latter can
be misleading as both datasets are drawn from a similar source distribution.
Another gap in DC benchmarking concerns evaluating selective classification
[138, 193], which is closer to the production value evaluation of how many
documents can be automated without any human assistance.

Another interesting evaluation protocol concerns out-of-the-box performance
or how data-hungry/sample-efficient a certain model is. In practice, few-shot
learning from minimal annotations is a highly valued skill. This few-shot learning
evaluation protocol has been applied in [402] with different data regimes. Finally,
inference complexity (time-memory) has been brought back to the attention
of OCR-free models [216], which we believe will be the key to measuring when
scaling solutions to multipage documents.

4.6 Chapter Conclusion

Our work represents a pivotal step forward in establishing multipage DC by
proposing a comprehensive benchmarking and evaluation methodology. Thereby,
we have addressed longstanding challenges and limitations (Section 4.5) that

https://benchmarks.elsa-ai.eu/?ch=2
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have hindered progress in the field. As motivated in our experimental study,
we have proven the need to advance multipage document representations and
inference.

Following up on this, we provide recommendations for future DC dataset
construction efforts pertaining to the type and nature of document data, variety
in and quality of the classification label set, with a focus on particular DC
scenarios closer to applications, and finally how future progress should be
measured. Nonetheless, we are hopeful that the VDU community can come
together on these shortcomings and apply the lessons from this reality check.
Extending the applicability of current state-of-the-art models in VDU to multipage
documents needs further exploration, which will go hand in hand with benchmark
creation initiatives or incorporating multiple DC task annotation layers on a
single dataset.
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Chapter 5

Document UnderstanDing of
Everything (DUDE )
The contents of this chapter come from two publications [468, 469]:

Jordy Van Landeghem, Rubèn Tito, Łukasz Borchmann, Michał Pietruszka, Dawid Jurkiewicz,
Rafał Powalski, Paweł Józiak, Sanket Biswas, Mickaël Coustaty, and Tomasz Stanisławek.
ICDAR 2023 Competition on Document UnderstanDing of Everything (DUDE). In
International Conference on Document Analysis and Recognition, pages 420–434. Springer,
2023

Jordy Van Landeghem, Rubèn Tito, Łukasz Borchmann, Michał Pietruszka, Pawel Joziak,
Rafal Powalski, Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Anckaert, Ernest Valveny,
Matthew Blaschko, Marie-Francine Moens, and Tomasz Stanisławek. Document Understanding
Dataset and Evaluation (DUDE). In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 19528–19540, 2023

The first publication on the Document UnderstanDing of Everything (DUDE)
competition was selected for oral presentation at ICDAR 2023. The second
publication on the DUDE dataset and benchmark was featured as a poster
presentation at ICCV 2023.
This multi-party collaboration (6 universities and 3 companies) with many
brilliant researchers involved the creation of a new dataset and benchmark, the
organization of a competition, and the publication of the results. For clarity,
we will refer to the DUDE competition as the ICDAR 2023 competition, and
the DUDE dataset and benchmark as the ICCV publication.
Author declarations: https://drive.google.com/file/d/1AmSxTOLk1Lo61sgWLd5FN5OMNQEgam_v

In short, I conceptualized the project, was responsible for the dataset creation,
annotation, and benchmarking (encoder-only models, T5, HiVT5), designed
evaluation and confidence estimation, and wrote the majority of the ICDAR
and ICCV papers.

The dataset is available: https://huggingface.co/datasets/jordyvl/DUDE_loader.
Benchmark code is available: https://github.com/rubenpt91/MP-DocVQA-Framework.
The competition remains open for submissions at: https://rrc.cvc.uab.es/?ch=23.

https://drive.google.com/file/d/1AmSxTOLk1Lo61sgWLd5FN5OMNQEgam_v
https://huggingface.co/datasets/jordyvl/DUDE_loader
https://github.com/rubenpt91/MP-DocVQA-Framework
https://rrc.cvc.uab.es/?ch=23
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Document UnderstanDing of Everything (DUDE) is a concept rooted in both
machine learning and philosophy, seeking to expand the boundaries of document
AI systems by creating highly challenging datasets that encompass a diverse
range of topics, disciplines, and complexities. Inspired by the philosophical
‘Theory of Everything’, which aims to provide a comprehensive explanation of
the nature of reality, DUDE endeavors to stimulate the development of AI
models that can effectively comprehend, analyze, and respond to any question
on any complex visually-rich document (VRD).

Incorporating philosophical perspectives into DUDE enriches the approach by
engaging with fundamental questions about knowledge understanding, and the
nature of documents. By addressing these dimensions, researchers can develop
AI systems that not only exhibit advanced problem-solving skills but also
demonstrate a deeper understanding of the context, nuances, and implications
of the information they process.

This chapter will present the Document UnderstanDing of Everything (DUDE)
dataset, benchmark and competition. It will be presented in a similar form as
the ICCV publication, extended with the results of the ICDAR competition.
In line with the standpoint in the previous chapter, we call on the Document
AI (DocAI) community to re-evaluate current methodologies and embrace the
challenge of creating more practically-oriented benchmarks. This project aims to
remediate the halted research progress in understanding visually-rich documents
(VRDs). We present a new dataset with novelties related to types of questions,
answers, and document layouts based on multi-industry, multi-domain, and
multipage VRDs of various origins, and dates.

Moreover, we are pushing the boundaries of current methods by creating
multi-task and multi-domain evaluation setups that more accurately simulate
real-world situations where powerful generalization and adaptation under low-
resource settings are desired. DUDE aims to set a new standard as a more
practical, long-standing benchmark for the community, and we hope that it will
lead to future extensions and contributions that address real-world challenges.
Additionally, we present the results of the DUDE competition and discuss the
innovations demonstrated by participants. The competition was structured as
a single task with a multi-phased evaluation protocol that assesses the few-shot
capabilities of models by testing generalization to previously unseen questions
and domains, a condition essential to business use cases prevailing in the field.
Under the newly studied settings, current SOTA models show a significant
performance gap, even when improving visual evidence and handling multipage
documents. We conclude that the DUDE dataset proposed in this competition
will be an essential, long-standing benchmark to further explore for achieving
improved generalization and adaptation under low-resource fine-tuning, as
desired in the real world. To sum up, our work illustrates the importance of
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finding more efficient ways to model language, images, and layout in DocAI.

Page  1 Page  2

...

Page N

Text

#extractive #list

Q: What are the Years mentioned in
Chart 1?

A: [2020, 2021, 2022]

#multi-hop #layout-navigating

Q: From the list of Top 10 Key
Recovery Components, which is the
last component listed on the second
page?

A: Hope

#abstractive #graphic-intensive
Q: Does this document contain any
checkboxes?

A: No

#layout-navigating #graphic-intensive
Q: Are the margins of the page
uniform on all pages?
A: Yes

#non-answerable

Q: In which year does the Net
Requirement exceed 25,000?

A: None

#abstractive #counting
Q: How many attorneys are listed for
the plaintiffs?

A: Two

Figure 5.1. QA as a natural language interface to multipage VRDs.

5.1 Introduction

Early stages of research and growth in any field are characterized by enacting
proof-of-concept and demonstrating the feasibility of the proposed solution. In
the Deep Learning era, this is often echoed by building narrow and simplified
datasets that do not reflect real-world complexity, leading to models that may
not be suitable for practical use.

The field of Document Understanding (DU) is not an exception to the recent
proliferation of deep architectures, which in this case are predominantly used for
classification and information extraction from documents. However, the wide
and complex nature of documents presents many challenges that remain unsolved
or not yet addressed. One such challenge is domain generalization, where a
model trained on medical documents may not be directly applicable to financial
or tabular content. Another challenge concerns task-agnostic architectures,
where a model must be able to adapt to various DU subtasks such as document
classification, key information extraction (KIE), and question answering (QA).
Lastly, the high variability of document contents and layouts often leads to
highly imbalanced samples within document types, resulting in a long-tailed
distribution with few or almost no samples to train a model.

Despite the importance of these challenges, there is currently no DU benchmark
dataset that simultaneously addresses all of these issues. This paper proposes a
novel dataset formulated as an instance of Document Visual Question Answering
(DocVQA) to evaluate how well current DU solutions deal with multipage
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documents, if they can navigate and reason over visual layouts, and if they can
generalize their skills to different document types and domains.

The data collection and evaluation design of DUDE naturally motivates
targeting models that can answer natural yet highly diverse questions (e.g.,
regarding document elements, their properties, and compositions) for any VRD
(e.g., drawn from potentially unseen distributions of layouts, domains, and types).
The presented problem setting relates to Multi-Domain Long-Tailed Recognition
(MDLT) [507], which concerns learning from multi-domain imbalanced data
whilst addressing label imbalance, divergent label distributions across domains,
and possible train-test domain shift. Put plainly, since we cannot provide
ground truth QA pairs for, e.g., stamps, on every document type (domain),
we expect a solution to transfer the subtask ’stamp detection’ learned on
document types where stamps naturally occur (and thus training QA pairs were
created organically) to other domains. The DocVQA and MDLT formulations
of DUDE allow us to create a longstanding, challenging benchmark that in
the future can be easily extended with more subtasks formulated as QA pairs,
and domains relating to document types (see Limitations).

The contribution of this work is twofold. First, we have created DUDE, a novel
large-scale, multipaged, multi-domain, multi-industry DocVQA benchmark for
evaluating DU progress. Second, we show that the zero-shot and fine-tuned
performance of current SOTA models applied to DU lags far behind human
baselines, explained in part by the need for more holistic and efficient modeling
of language, vision, and richly structured layouts.

5.2 Related Work

Document Understanding encompasses datasets related to various subtasks
like document layout analysis [261, 544], classification [165], key information
extraction [197, 432], table extraction [427, 543, 545], and visual question
answering [308, 315, 450]. These benchmarks lead to end-to-end DU
architectures that have transformed common DocAI practices [15, 134, 153, 187,
263, 365, 371]. These task-specific benchmarks, however, are often tailored to
a single domain, limiting the ability to create and assess how well DU models
generalize to other document types and domains. To fill this gap, we adopt
a visual question answering (VQA) approach, which has been crucial in the
growth of the DU field.

The VQA paradigm provides a natural language interface for various
tasks from both computer vision and natural language processing. In
the latter, the question-answering approach has been successfully used in



DUDE DATASET 117

several domains, including medicine [202, 209, 257, 318, 338, 352, 384], open-
domain knowledge [281, 291, 313, 506], emotions [41, 155], code [7, 278],
logical reasoning [282, 504, 516, 534], claim verification [185, 446, 523], and
math [10, 65, 182, 316, 529]. As a result of its ability to function as a natural
language interface for various forms of data, this paradigm has been applied to
other domains. For example, the question-answering approach is combined with
modalities such as images [13, 38, 39, 161, 353, 513], speech [237, 514], knowledge
graphs [106, 206, 408, 429, 457], videos [58, 59, 74, 158, 249], and maps [60, 359].

Overall, the convergence of computer vision and NLP through the emergence of
VQA tasks has also opened up new avenues for research in the DU field, with
many DU datasets now including rich visual content alongside questions. Yet,
prior study on document VQA has mainly focused on single-page documents [308,
310, 449] with rare exceptions such as MP-DocVQA [451]. However, [308, 449]
pose only extractive questions where the answer follows the context on which the
question is defined as in other question answering benchmarks [235, 386, 456].
Moreover, these datasets do not contain non-answerable questions as in estab-
lished (natural language) QA datasets like [235, 387]. To the best of our knowl-
edge there are no VQA datasets containing questions requiring lists as an answer.
There are however few text-only QA datasets that contain such answer types [83,
256, 357]. Other datasets mainly related to our work are rather domain-specific
like [310, 375, 440, 441, 551]. We give a detailed comparison of most related
document VQA datasets in Table 5.1 highlighting the major contributions.

5.3 DUDE Dataset

While DUDE shares some similarities with existing VQA datasets, a closer
comparison (see Table 5.1) highlights its unique features. We are confident
that the model’s proficiency in the areas introduced in this work will showcase
its capability to handle the intricacy and diversity of document understanding
tasks in real-world scenarios.

Documents. The dataset covers a wide range of document types, sources and
dates, as shown in Table 5.1 and Figure 5.2 where its diverse nature is confirmed
by the spread of document content representations. Moreover, it covers a broad
range of domains, including medical, legal, technical, and financial, among
others, to evaluate models’ ability to handle diverse topics and the specific
knowledge each requires. Furthermore, the dataset contains documents with
varying layouts: diverse text arrangements, font sizes, and styles, to ensure that
models can handle visually diverse documents.
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TSNE Projection of 5641 Documents

DocVQA
InfographicsVQA
Ours
TAT-DQA
VQA-CD
VisualMRC

Figure 5.2. Visualization of inter-document similarities between samples from different
datasets (t-SNE over TF-IDF representations of 1k passages from each source).

In contrast to our proposal, current VQA datasets often focus on homogeneous
documents, such as invoices in VQA-CD [302] or financial reports in TAT-
DQA [551]. Even when not restricted to a single domain or layout, these
datasets share essential characteristics. For example, InfographicsVQA [310]
demonstrates significant diversity in topics and designs, but still embodies a
preference for visual aids over complex tables or long text passages. Moreover,
VQA datasets are commonly restricted to either born-digital or scanned
documents, which limits their ability to measure the robustness to mixed-
origin files that one usually finds in real-world applications. In particular, this
restriction makes it uncertain whether state-of-the-art performers on website
fragments from VisualMRC [440] can be efficient on multi-column layouts and
documents with OCR errors or incorrectly-detected reading orders. Finally, a
typical dataset for document VQA contains documents from a limited period,
i.e., a few years (Table 5.1).

Considering the properties mentioned above, the most diverse dataset to date
is Single Page DocVQA (SP-DocVQA) [308], which contains mixed-origin
documents of different types created over several decades. However, it is built
exclusively on single-page document excerpts and is limited to several domains
represented in the Industry Documents Library. As a result, it complements
rather than serves as a touchstone for general-purpose DU systems. MP-
DocVQA [451] extends this including previous and posterior pages of the
documents. However, the questions are kept the same which makes the extra
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pages mere distractors.

Questions. We use VQA as a natural language interface to VRDs, challenging
the DU model with diverse questions, advanced operations, and multi-step
reasoning to achieve real-world success.

Firstly, we assert that various layouts and visual elements must be comprehended
semantically. As such, we introduce complex questions targeting these document
elements, requiring comprehension beyond the document content, such as
‘how many text columns are there?’, ‘does the document contain words with
diacritics?’ or ‘which page contains the largest table in the document?’. These
layout-navigating questions bridge the gap between Document Layout Analysis
and Question Answering paradigms.

Our unique and detailed compositional questions demand a model that
comprehends semantics and generalizes to new questions in a zero-shot setting.
For example, >90% of our questions are unique, while we target questions
whose answer scope is much more diverse than in previous works.1 Since
neural networks are known to perform poorly at mathematical reasoning and
symbolical processing, we provide training and evaluation questions demanding
arithmetic and comparison operations on numbers and dates.

Moreover, we feature multi-hop questions that indicate a model’s robustness to
sequential reasoning and mimic how humans ask questions. They may be useful
in real-world tasks such as ‘If the checkbox on page 1 section 3a indicates that
the company is incorporated, how much yearly revenue did it generate in 2022
(given the table on page 5)?’

Answers. Even though some VQA datasets are deliberately limited to
questions of exclusively extractive (SP-DocVQA) or abstractive (VisualMRC)
nature, others do not obey such restrictions and include both question types
(see Table 5.1). The dataset we provide includes both abstractive and extractive
answers, covering various types such as textual, numerical, dates, yes/no, lists,
or no answer.

This allows us to cover all possible business use cases and reveal major deficiencies
of existing DU systems beyond typical textual answers. For instance, no existing
VQA dataset includes not answerable questions and questions answered with a
list. In turn, the models considered to date supposedly tend to make unreliable
guesses on questions with an answer not entailed by the content [387]. Our

1Answer type comparison is included in supplementary materials.
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dataset is designed to cover answers beyond plain extractive text such as a list
of items or even ‘None’.

The ‘None’ answer type demands that the model correctly identifies that the
answer cannot be provided, as the question needs to be better formed, e.g., it
asks about the value of an empty cell in the table. In addition, list generation
problems pose challenges to the model, as (1) more tokens need to be generated,
(2) they may be sourced from different places in the document, and (3) OCR
reading order may influence the element ordering.

5.3.1 Gathering Documents

A fundamental difficulty in gathering raw source files was ensuring dataset
diversity while fulfilling strict licensing requirements. Therefore, rather than
depending on initial sources of files, e.g., libraries that originally published
digitized materials, we resorted to aggregate websites.

The document collection process was manual and assumed formulating queries
to archive.org (containing 36M books and texts), commons.wikimedia.org (with
86M media types of various types), and documentcloud.org (with around 5M
public documents). The queries consisted of keywords relevant to some category
of interest, e.g., the resume category of our proposal consists of ‘resume’, ‘cv’,
‘curriculum’, and ‘biography’ keywords). Where necessary, a separate query
parameter ensured that the resulting files belonged to the public domain or
were released under a permissive license. Information on keywords and the
search procedure is distributed as a part of the DUDE dataset.

From the resulting documents, we selected those representing the requested
category and visually distinctive from the ones already gathered. Special care
was put into removing examples that visibly expose controversial content or may
be subject to privacy or legal concerns, despite the declared license. We collected
five thousand, typically multipage, English documents using this methodology.

5.3.2 Annotation Process

The annotation process involved in-house annotators and Amazon Mechanical
Turk freelancers. For the latter, there is limited control over the expertise,
and where justified, we resorted to limiting task availability depending on the
number of completed tasks and historical acceptance rate.2 The former are five
highly qualified people with a Ph.D. in Linguistics. These three annotation

2Approval above 97% over at least 5k HITs.

http://archive.org
http://commons.wikimedia.org
http://documentcloud.org
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scenarios will be referred to as All MTurkers, Best MTurkers, and Qualified
Linguists.

We estimate the total cost of annotation involving both Linguists and MTurkers
as $20,000.

Phase 1. We started by providing All MTurkers documents described in
Section 5.3.1 in separate batches aimed at collecting abstractive, extractive,
and list QA pairs. Each freelancer was asked to propose up to five questions
of a particular type, and in the case of extractive ones to provide an evidence
bounding box. The exception to this process is the annotation of non-answerable
questions previously shown to be particularly challenging [387]. These are
predominantly annotated by Qualified Linguists and because of their quality
promoted without passing through Phases 2-3.

Candidate QA pairs are semi-automatically filtered to exclude annotations that
cannot be valid due to the length, use of non-typical character combinations,
or type-specific criteria, such as non-list answers for list batches. Additionally,
we cluster duplicate and near-duplicate question-answer pairs to ensure dataset
diversity and promote them directly to Phase 3 after a manual review (the same
QA pairs provided independently by several annotators indicate their validity).

Phase 2. The rest of the annotations promoted from Phase 1 were directed
to All MTurkers, but this time instead of providing complete QA pairs, they
were asked to answer the question from the previous round. Obtained triples of
questions and two answer variants (one from each phase) were evaluated using
inter-answer ANLS (defined in Section 5.3.5) promoted to the final dataset if
the agreement was >0.8. Otherwise, QA triples were directed to Phase 3.

Phase 3. Best MTurkers were provided with document, question, and answer
variants to decide the correctness of each answer and optionally overrule both
variants if they are not correct. Outliers from decisions in this phase, such as
repealing without a judgment on previous answers, were reviewed by Qualified
Linguists and corrected if needed.

Optional Phase 4. Annotations of the test set were reviewed by Qualified
Linguists. Given data from Phase 3, they corrected questions, answers and
created metadata related to diagnostic categories described in Section 5.3.4.
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5.3.3 Dataset Statistics

Dataset Ours SP-DocVQA VisualMRC InfographicsVQA TAT-DQA
Dataset-level properties

Sources Multi Industry docs Web pages Infographics Finance
reports

Origin BD, Scan Mostly scans BD BD BD
Period 1860-2022 1960-2000 Jan-Mar 2020 not specified 2018-2020
Documents 5,019 12,767 10,234 5,485 2,758
Pages (avg±std ) 5.72±6.4 1.0±0.0 1.0±0.0 1.0±0.0 1.11±0.32
Tokens (avg±std ) 1,831.53±2,545.06 183±149.96 154.19±79.34 287.98±214.57 576.99±290.12
Simpson coeff.
(ResNet)

0.82 0.76 0.83 0.86 0.73

Simpson coeff. (Tf-Idf) 0.95 0.93 0.99 0.94 0.15
Question-level properties

Questions 41,541 50,000 30,562 30,035 16,558
Unique (%) 90.9 72.34 96.26 99.11 95.65
Length (avg±std ) 8.65±3.35 8.34±3.04 9.38±4.01 11.57±3.71 12.51±4.18
Semantics All T, L, F, Ch T, L, F, Ch T, L, F, Ch, M T, L

Answer-level properties
Unique (%) 70.7 64.29 91.82 48.84 77.54
Length (avg±std ) 3.35±6.1 2.11±1.67 8.38±6.36 1.66±1.43 3.44±7.20
Extractive (%) 42.39 100.0 0.0 71.96 55.72
Abstractive (%) 38.25 0.0 100.0 24.91 44.28
List (%) 6.62 0.0 0.0 5.69 0.0
None 12.74 0.0 0.0 0.0 0.0

Table 5.1. Summary of the existing English document datasets and our challenge. BD
stands for born-digital. Layout semantics are abbreviated as (T)able, (L)ist, (F)igure,
(Ch)art, and M(ap). Comparison based on Azure Cognitive Services (3.2) OCR.

We conducted a statistical analysis of our dataset and found that the distribution
of document length, question length, and answer type was much more diverse
than in other datasets in the same domain. We also used the Simpson diversity
coefficient [421] for analysis and summarized the results in Table 5.1. The
following are the statistics for the data split:

train val test (diagnostic)

documents 3,010 749 1,215 (530)
questions 23,728 6,315 11,448 (2,462)

Table 5.2. Data split counts.

The number of tokens in the document distribution is much more diverse
compared to other datasets, a consequence of the more diverse distribution of
pages (see Figure 5.4). Note some of the documents are more visual than textual
(or even visual-only), making the left whisker essentially reach 0 (log2-scaling
of x-axis).
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Figure 5.3. Distribution of the number of tokens in documents, answers, and questions.

Figure 5.4. While other datasets are predominantly single-page only, the number of
pages featuring in DUDE is more diverse, yet still biased towards shorter documents.

The distribution of the number of tokens in answers is heavy-tailed, to some
extent this is also the property of the distribution of number of tokens in
questions. Furthermore, 90.9% of questions are unique, and so are 70.7% of
answers (taking answer variants into account).

We scrutinized the answer types by aggregating possible answers into classes
representing the information they conveyed. The study used heuristics to
determine if the answers fit into NER labeling scheme [20] or categories we
anticipated, such as yes/no and none, or did not anticipate, such as color. This
resulted in 25 different groups of answers, with the other answer type being the
fourth largest group. Cramer’s V coefficient was used to check for correlations
between question types and answer types, and the results indicated that there
were few correlations . The expected correlations, such as none answers with
not-answerable questions or yes/no answers with abstractive questions, were
present, but barely any correlation was significant. This suggests it is hard to
guess the answer based on the question solely.

We study relative diversity measure, called Simpson coefficient [421, 546]. To
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Figure 5.5. Count of particular diagnostic categories in a subset of 2.5k test set QA
pairs annotated in detail to help analyze models’ performance.

define it, consider a fixed distance function d(a1, a2) defined for pair of documents
a1, a2 ∈ A: the dataset. In our applications, it is the cosine similarity of a
document embedding. Further, for an arbitrary number of datasets A1, . . . , AN
the diversity of A1 with respect to A2, . . . , AN is defined as

DivA2,...,AN
(A1) = 1− p

(
d(a11, a12) < min

i=2:N
d(ai1, ai2)

)
where ai1, ai2 ∈ Ai, are randomly selected, i = 2 : Ni = 2 : N . We report
relative diversities of each of the datasets, relative to other datasets in the study,
based on two embeddings: visual (ResNet-101 embeddings-based) and semantic
(Tf-Idf embeddings-based), in Table 5.1. The results show that the probability
that two random documents from DUDE are more similar than each random
pair of documents from other datasets is small, meaning that documents in our
dataset are well-distributed and diverse.

5.3.4 Diagnostic Subsets

Following previous DU datasets, we gather diagnostic metadata for close to
half of the documents and QA pairs in the test set (see Figure 5.5). These
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are intended to enable a fine-grained analysis of the models’ performance. The
taxonomy used is an extension of the one from earlier works [47, 308, 310],
covering DUDE-specific questions and enables a more detailed examination
of visual artifacts under consideration.

Question type and perceived complexity. We distinguish questions perceived
as simple, i.e., those based on spotting value near a phrase mentioned
explicitly as a part of the question. For example, "Who is the Secretary
of the U.S. Department of Commerce?" when the document contains "Penny
Pritzker, Secretary, U.S. Department of Commerce." Such could be guessed
given an approximate string matching algorithm and does not require much
comprehension beyond that. The remaining questions are marked as hard with
distinguished categories of hard multi-hop questions, and hard meta/layout-
navigating questions.

Answer evidence. We provide information on what types of elements have to
be comprehended to provide an answer, including free text, handwriting, table or
list, and layout, i.e., non-tabular spatial understanding of text placement. These
follow the ontology established by previous works [47, 308, 310]. In addition, we
supply hints on graphical artifacts one needs to consider for particular questions,
such as image/photo, plot/chart, checkbox, and annotation.

Required operation. We distinguish arithmetic, comparison, counting, and
normalization operations to provide information on the need for performing,
respectively, arithmetic operations on extractable data, comparing numerical
values or sizes, counting elements or converting data present in the document
to another format (e.g., rounding or date format conversion).

Answer form/shape. Finally, we provide information on the shallow form of
the returned answer, including date, numeric, and proper name.

5.3.5 Evaluation

The evaluation process follows the typical paradigm of separate training,
validation, and test splits. We provide both a standalone evaluator and a
website3 [467] to submit test set predictions.

3rrc.cvc.uab.es/?ch=23

rrc.cvc.uab.es/?ch=23
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To assess models’ performance, we rely on the ANLS metric introduced by
authors of the ST-VQA dataset [39]. Roughly speaking, it is a generalization
of accuracy that does not penalize the system for an answer whose similarity
to the gold standard measured with normalized Levenshtein similarity is above
a specified threshold. Moreover, the metric assumes the presence of multiple,
equally valid reference answers. The mentioned properties account for possible
OCR errors or different phrasings, such as the same numerical answer represented
as two and 2 by different annotators.

In practice, production DU systems provide an estimation of confidence in order
to triage documents that do not need to be manually reviewed by a human.
While the reliability of the automation ability of a DU solution is deemed
quintessential for generating business value in practice [48], DU research rarely
reports any confidence evaluation. Some exceptions are in closely related task
domains like scene text recognition [425] and QA [208, 531].

With DUDE, we want to establish calibration evaluation and confidence ranking
as a default evaluation methodology in DU, especially since the field is so close
to applications.

To this end, we report (next to ANLS) two additional metrics, Expected
Calibration Error (ECE) [156, 332, 340], and Area-Under-Risk-Coverage-Curve
(AURC) [138, 193].

Calibration requires that the probability a model assigns to its predictions
equals their true likelihood of being correct [86, 88, 520].

ECE approximates top-1 calibration error by a weighted average over the
accuracy/confidence difference of histogram bins. Particularly in our evaluation
setting, we consider a predicted answer correct if its ANLS to the ground
truth answer is above a pre-defined threshold (τ=0.5). For consistency, not-
answerable and list-answers both have confidence estimated for the answer as a
whole (regardless of the number of answers). Following [342], we apply equal-
size binning (with 100 bins, Lp = 1), avoiding some pathologies of equal-range
binning [231, 463].

AURC is a selective classification metric that evaluates how well an estimator
prevents silent failures on an i.i.d test set. As an aggregate measure of estimator
performance (ANLS) and confidence ranking, it provides a more practically
useful estimate of overall performance when the estimator can abstain from
(low-confidence) decisions and defer to a human for feedback.

By reporting the above metrics, we hope that in future work there will be
contributions (e.g., calibration methods for improved forecasting or metrics for
better predictive uncertainty evaluation) that concretely target the empirical
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observations of overconfidence/miscalibration in DU models.

5.4 DUDE Competition

Over the past few years, the field of Document Analysis and Recognition (DAR)
has embraced multimodality with contributions from both NLP and CV. This
has given rise to DU as the all-encompassing solution [15, 187, 371] for handling
VRDs, where layout and visual information is decisive in understanding a
document.

This umbrella term subsumes multiple subtasks ranging from KIE [197, 432],
DLA [544], VQA [310, 450], table recognition [201, 376], and so on. For each of
these subtasks, influential challenges have been proposed, e.g., the ICDAR 2019
Scene Text VQA [38, 39] and ICDAR 2021 Document VQA (DocVQA) [308, 450]
challenges, which in turn have generated novel ideas that have impacted the
new wave of architectures that are currently transforming the DAR field.

Nevertheless, we argue that the DAR community must encompass the future
challenges (multi-domain, multi-task, multipage, low-resource settings) that
naturally juxtapose the previous competitions with pragmatic feedback attained
via its business-driven applications.

5.4.1 Challenge Objectives

We aim to support the emergence of models with strong multi-domain layout
reasoning abilities by adopting a diversified setting where multiple document
types with different properties are present. Moreover, a low-resource setting
(number of samples) is assumed for every domain provided, which formulated as
a DocVQA competition allows us to measure progress with regard to the desired
generalization (Section 5.4.3.1). Additionally, we strive for the development of
confidence estimation methods that can not only improve predictive performance
but also adjust the calibration of model outputs, leading to more practical and
reliable DU solutions.

We believe that DUDE’s emphasis on task adaptation and the capability
of handling a wide range of document types, layouts, and complexities will
encourage researchers to push the boundaries of current DU techniques, fostering
innovation in areas such as multimodal learning, transfer learning, and zero-shot
generalization.
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5.4.2 Challenge Contributions

DUDE answers the call for measuring improvements closer to the real-world
applicability of DU models. By design of the dataset and competition,
participants were forced to make novel contributions in order to make a
significant impact on the DU task. Competitors showcased intriguing model
extensions, such as combining models that learn strong document representations
with the strengths of recent large language or vision-language models (ChatGPT
[52] and BLIP2 [258, 260]) to better understand questions and extract
information from a document context more effectively. HiVT5 + modules
extended Hi-VT5 [451] with token/object embeddings for various DU subtasks,
while MMT5 employed a two-stage pretraining process and multiple objectives
to enhance performance. These innovative extensions highlight the ingenuity in
addressing the complex challenges of document understanding.

5.4.3 Motivation and Scope

We posit that progress in DU is determined not only by the improvements in
each of its related predecessor fields (CV, NLP) but even more by the factors
connecting to document intelligence, as explicitly understood in business settings.
To improve the real-world applicability of DU models, one must consider (i) the
availability and variety of types of documents in a dataset, as well as (ii) the
problem-framing methods.

Currently, publicly available datasets avoid multipage documents, are not
concerned with multi-task settings, nor provide multi-domain documents of
sufficiently different types. These limitations hinder real-world DU systems,
given the ever-increasing number of document types occurring in various business
scenarios. This problem is often bypassed by building systems based on private
datasets, which leads to a situation where datasets cannot be shared, documents
of interest are not covered in benchmarks, and published methods cannot
be compared objectively. DUDE counters these limitations by explicitly
incorporating a large variety of multipage documents and document types.
Furthermore, the adaptability of DU to the real world is slowed down by a
low-resource setting, since only a limited number of training examples can be
provided, involving unpleasant manual labor, and subsequently costly model
development. Anytime a new dataset is produced in the scientific or commercial
context, a new model must be specifically designed and trained on it to achieve
satisfactory performance. At the same time, transfer learning is the most
promising solution for rapid model improvements, while zero- and few-shot
performance still needs to be addressed in evaluation benchmarks.
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Bearing in mind the characteristics outlined above, we formulated the DUDE
dataset as an instance of DocVQA to evaluate how well current solutions can
simultaneously handle the complexity and variety of real-world documents
and all subtasks that can be expected. Optimally, a DU model should
understand layout in a way that allows for zero-shot performance through
attaining "desired generalization", i.e., generalization to any documents (e.g.,
drawn from previously unseen distributions of layouts, domains, and types)
and any questions (e.g., regarding document elements, their properties, and
compositions). Therefore, we incorporated these criteria while designing our
dataset, which may stand as a common starting point and a cooperative path
toward progress in this emerging area.

5.4.3.1 Desired Generalization.

The challenge presented by DUDE is an instance of a Multi-Domain Long-
Tailed Recognition (MDLT ) problem [507].

Definition 14 (Multi-Domain Long-Tailed Recognition). MDLT focuses on
learning from multi-domain imbalanced data whilst addressing label imbalance,
divergent label distributions across domains, and potential train-test domain
shift. This framework naturally motivates targeting estimators that generalize
to all domain-label pairs.

A domain D = {(xi, yi)}Ni=1 is composed of data sampled from a distribution
PXY , where X denotes an input space (documents) and Y the output space
(QA pairs). Each x ∈ X represents a document, forming a tuple of (v, l, t),
expressing a complex composition of visual, layout and textual elements. For
simplicity, consider that each ‘label’ y ∈ Y represents a question-answer pair,
relating to implicit tasks to be completed (such as date KIE in What is the
document date?). Due to the potentially compositional nature of QA, the label
distribution is evidently long-tailed. During training, we are given M domains
(document types) on which we expect a solution to generalize (Figure 5.6), both
within (different number of samples for each unique task) and across domains
(even without examples of a task in a given domain).

What sets apart domains is any difference in their joint distributions P jXY 6=
P kXY . For example, an invoice is less similar (in terms of language use, visual
appearance, and layout) to a contract than to a receipt or credit note. Yet,
a credit note naturally contains a stamp stating information such as “invoice
paid”, whereas receipts rarely contain stamps. This might require a system to
transfer ‘stamp detection’ learned within another domain, say on notary deeds.
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Figure 5.6. Illustration of MDLT as applicable to the DUDE problem setting. The y-
axis aggregates skills related to specific KIE or reasoning tasks over document elements
(checkbox, signature, logo, footnote, ...). The x-axis denotes the obtained samples
(QA pairs) per task. Each domain has a different label distribution P (Y ), typically
relating to within-domain document properties P (X).This training data exhibits label
distribution shifts across domains, often requiring zero-shot generalization (marked
red).

Notably, it will be ‘organic’ to obtain more examples of certain questions (tasks)
in a given domain. This should also encourage models to learn a certain skill in
the domains where they have more training examples. Put plainly, it is better to
learn checkbox detection on contracts than on invoices, which rarely contain any.
This MDLT framework allows us to create a lasting, challenging benchmark
that can be easily extended in the future with more tasks (formulated as QA
pairs) and domains (relating to document types). In the first iteration of the
DUDE competition, we have targeted specific skills by guiding annotators with
focused instructions, which we share for future extensions.

5.4.4 DUDE Competition Protocol

The ICDAR 2023 competition on Document UnderstanDing of Everything took
place from February to May of 2023. A training-validation set with 30k QA
annotations on 3.7k documents was given to participants at the beginning of
February. The 11.4k questions on 12.1k documents for the test set were only
made accessible for a window between March and May. Participants were
asked to submit results obtained on the public, blind test set documents rather
than deliver model executables, although they were encouraged to open-source
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their implementations. We relied on the scientific integrity of the participants
to adhere to the competition’s guidelines specified on The Robust Reading
Competition (RRC) portal4.

5.4.4.1 Task Formulation

Given an input consisting of a PDF with multiple pages and a natural language
question, the objective is to provide a natural language answer together with
an assessment of the answer confidence (a float value scaled between 0 and 1).
Each unique document is annotated with multiple questions of different types,
including extractive, abstractive, list, and non-answerable. Annotated QA
pairs are not restricted to the answer being explicitly present in the document.
Instead, any question on aspect, form, or visual/layout appearance relative to
the document under review is allowed.

Additionally, competitors were allowed to submit results for only a specific answer
type (provided in annotations) such that, for example for extractive questions,
encoder-only architectures could compete inDUDE. Another important subtask
is to obtain a calibrated and selective DocVQA system, which lowers answer
confidence when unsure about its answers and does not hallucinate in case
of non-answerable questions. Regardless of the number of answers (zero in
the case of non-answerable or multiple in list-questions), we expect a single
confidence estimate for the whole answer to guarantee consistency in calibration
evaluation. To promote fair competition, we provided for each document three
OCR versions obtained from one open-source (Tesseract) and two commercial
engines (Azure, AWS).

5.4.4.2 Evaluation Protocol

The first evaluation phase assumes only independently and identically distributed
(i.i.d.) data containing a similar mixture of document and question-answer
types for the train-validation-test splits. The same evaluation metrics as the
benchmark apply for this phase.

The (implicit) second evaluation phase created a mixture of seen and unseen
domain test data. This was launched jointly with the first evaluation phase, as
otherwise, one would be able to already detect the novel unseen domain test
samples. To score how gracefully a system deals with unseen domain data, the
evaluation metric is AUROC [270], which roughly corresponds to the probability
that a positive example (in-domain) is assigned a higher detection score than

4https://rrc.cvc.uab.es/?ch=23

https://rrc.cvc.uab.es/?ch=23
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a negative example (out-of-domain). A system is expected to either lower its
confidence or abstain from giving an answer.

There is a strict difference between a non-answerable question and an unseen
domain question. For the former, the document is from a domain that was
included during training, yet the question cannot be solved with the document
content, e.g., asking about who signed the document without any signatures
present. For the latter, the question is apt for the document content, yet the
document is from a domain that was not included during training and validation,
which we would expect the system to pick up on.

All metric implementations and evaluation scripts are made available as a
standalone repository to allow participants to evaluate close to official blind
test evaluations5.

All submitted predictions are automatically evaluated, and the competition site
provides ranking tables and visualization tools newly adapted to PDF inputs to
examine the results. After the formal competition period, it will serve as an
open archive of results. The main competition winner will be decided based on
the aggregate high scores for ANLS, AURC, and AUROC.

5.5 DUDE Benchmark

5.5.1 Baselines

Human performance. To establish the human baseline, we assign test set
questions to Qualified Linguists, ensuring none of them will face the same
documents as reviewed in Phase 4. The procedure results in an estimation of
74.76 ANLS points (Table 5.3). At first glance, this result seems low. Still, when
analyzing results case by case, it turns out that it’s hard to score much better
since the answer format can influence the overall results a lot: Eagle vs. an eagle
(0.625 ANLS), 62% vs. 62 (0.67 ANLS), 1958-04-29 vs. 4-29-58 (0 ANLS),
Clemson University, Clemson South Carolina vs. Clemson University (0 ANLS).
We achieved the lowest performance (67.58) on the extractive question type,
which confirms our hypothesis since the abstractive answers are shorter (mostly
numbers, yes/no, or colors).

We analyzed the maximum score achieved by the best-performing model for
each diagnostic test category and plotted that against the human performance
in Figure 5.7.

5https://github.com/Jordy-VL/DUDEeval

https://github.com/Jordy-VL/DUDEeval
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Figure 5.7. We report the average ANLS for the human expert vs. the best-performing
model per diagnostic category as a ceiling analysis.

Reference models. We assessed a group of models to determine how their
performance is influenced by different factors such as (1) their ability to handle
textual, layout, and visual elements, (2) whether they were fine-tuned for the
task, (3) their size in (trainable parameters), and (4) the maximum input length
they can handle.

To analyze factors (1) and (2), we conducted a zero-shot evaluation of several
baseline text-only models. We used three encoder-based models (BERT [94],
Longformer [28], and BigBird [521]) that cannot generate text and three that
feature a decoder (T5 [383], GPT-3-Davinci [52], and ChatGPT) and have this
capability. Next, we extended the T5 architecture with 2D layout embeddings
[47, 371] and fine-tuned models with increasing maximum sequence lengths (512
→ 8192) on DUDE. Finally, we evaluated our replication of the hierarchical
Hi-VT5 model [451], as this model has the ability to decode text, understand
multipage layouts, and comprehend visual page features using DiT [259].

Regarding factors (2) and (3), we evaluated models of various sizes ranging
from 131M (BigBird) to 175B (GPT-3-Davinci) and varied the input context
from 512 (BERT) to 20480 (Hi-VT5) tokens. Overall, we thoroughly evaluated
multiple models in the different testing setups to determine their performance
under various conditions, as seen in Table 5.3.

5.5.2 Analysis & Discussion

To summarize, our study reveals that existing advanced language models such as
BERT, Longformer, and BigBird struggle with comprehending visual elements
and document layouts. To address this issue, we introduced T5, T5-2D, and
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Model Init. Params Max Seq.
Length

Test
Setup ANLSall ↑ ECEall ↓ AURCall ↓ ANLSdo

ANLSdo
Abs

ANLSdo
Ex

ANLSdo
NA

ANLSdo
Li

text-only Encoder-based models
Big Bird MPDocVQA 131M 4096 Concat* 26.27 30.14 44.22 30.67 7.11 40.26 12.75 8.46
BERT-Large MPDocVQA 334M 512 Max Conf.* 25.48 34.06 48.60 32.18 7.28 42.23 5.88 11.13
Longformer MPDocVQA 148M 4096 Concat* 27.14 27.59 44.59 33.45 8.55 43.58 10.78 10.62
text-only Encoder-Decoder based models
T5 base 223M 512 Concat-0* 19.65 19.14 48.83 25.62 5.24 33.91 0 7.31
T5 MPDocVQA 223M 512 Max Conf.* 29.48 27.18 43.06 37.56 21.19 44.22 0 10.56
T5 base 223M 512 Concat+FT 37.41 10.82 41.09 40.61 42.61 48.20 53.92 16.87
T5 base 223M 8192 Concat+FT 41.80 17.33 49.53 44.95 47.62 50.49 63.72 7.56
text-only Large Language models (LLM)
ChatGPT gpt-3.5-turbo 20B 4096 Concat-0 - - - 35.07 16.73 42.52 70.59 15.97

Concat-4 - - - 41.89 22.19 49.90 77.45 17.74
GPT3 davinci3 175B 4000 Concat-0 - - - 43.95 18.16 54.44 73.53 36.32

Concat-4 - - - 47.04 22.37 57.09 63.73 40.01
text+layout Encoder-Decoder based models
T5-2D base 223M 512 Concat+FT 37.10 10.85 41.46 40.50 42.48 48.62 52.94 3.49
T5-2D base 223M 8192 Concat+FT 42.10 17.00 48.83 45.73 48.37 52.29 63.72 8.02
T5-2D large 770M 8192 Concat+FT 46.06 14.40 35.70 48.14 50.81 55.65 68.62 5.43
text+layout+vision models
HiVT5 316M 20480 Hierarchical+FT 23.06 11.91 54.35 22.33 33.94 17.60 61.76 6.83
LayoutLMv3 MPDocVQA 125M 512 Max Conf.* 20.31 34.97 47.51 25.27 8.10 32.60 8.82 7.82

Human baseline 74.76 81.95 67.58 83.33 67.74

Table 5.3. Summary of Baseline performance on the DUDE test set (all) and
diagnostic subset (do). Test setups are defined as Max Conf.: predict one answer per
page and return an answer with the highest probability over all pages, Concat: predict
on tokens truncated to maximum sequence length, FT stands for fine-tuning on
DUDE training data, and -0 refers to zero-shot and -4 few-shot inference. Average
ANLS results per question type are abbreviated as (Abs)tractive, (Ex)tractive,
(N)ot-(A)nswerable, (Li)st. (*) We report only results for best performing test setup
(either Max Conf. or Concat). All scalars are scaled between 0 and 100 for readability.

Hi-VT5 models that incorporate layout and visual information. Still, their
performance remains unsatisfactory, as evidenced by the comparison with the
human baseline, similar to what has been reported for InfographicsVQA. This
indicates that there is still scope for enhancing the visual understanding of
DUDE models. Moreover, our findings indicate that a large LLM capable of
processing long inputs alone is insufficient for achieving strong performance
in DUDE, especially for the extractive type of answer. Finally, the dataset’s
length significantly affects the models’ scores, as seen by the increase in scores
by 4.4− 5.0 points when the T5 and T5+2D context length is extended from
512 to 8192. Similarly, the model size has a positive correlation with the final
score, but it holds only within a particular model-type and is not the main
factor influencing the results. State-of-the-art performance of 46.04 ANLSall
was achieved on T5large with a 2D layout understanding that consumed 8192
tokens, confirming the observation above.
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5.6 Detailed Results Analysis

5.6.1 Within Model Class Analysis

5.6.1.1 Encoder vs. Decoder

A key difference between encoder-only and (encoder-) decoder-based models is
the ability to generate answers beyond the explicit document textual content.
This is clearly reflected in the results for BigBird, Longformer, BERT, and
LayoutLMv3, which score < 10 ANLS% on abstractive questions, whereas they
have just average scores for extractive questions. On DUDE, we can claim
that a generative model is necessary given all considered question types.

Quite remarkably, while the human baseline demonstrates that humans find
abstractive questions (ANLS ±82%) easier than extractive questions (ANLS
±68%), the reverse is true for all machine baselines. A potential confounder
for these results could be the difference in output formatting for extractive vs.
abstractive answers, which is hard to take into account with ANLS evaluation.

5.6.1.2 Incorporating Layout & Vision

When comparing T5 with and without 2D position embeddings on the diagnostic
categories, we find the highest improvements on ‘evidence table or list’,
‘complexity simple’, and ‘evidence plain’.

Our study with the proposed baselines shows that questions requiring visual
evidence to be answered are an important future challenge for the vision
community. To get further insights into models’ performance on these questions,
we calculate a weighted average of ANLS over visual categories. This reveals
that GPT3 (4-shot) and T5-2d-large-8K obtain a tied score of (ANLS=37%),
even though they only have access to the text. The human performance, on the
other hand, is close to double (ANLS=72%), thus showing the need for better
integration of the visual modality in DU models.

5.6.1.3 Toward Long Document Processing

DUDE clearly requires methods that can process long sequences, as evidenced
by its average document length of 1832 ± 2545 tokens. This is particularly
evident when comparing standard NLP QA methods like BERT-concat, which
underperforms Longformer [28] and BigBird [521], despite being the large version.
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Experiments with T5 and T5-2D further support this claim, as extending the
sequence length from 512 to 8192 leads to a ∼ 5% ANLS improvement.

The exception is HiVT5 [451], which performs worse than the rest of the
methods. This is due to the authors of HiVT5 performing a pretraining task of
text denoising that helped to better model the [PAGE] tokens. This resulted
in a better, compressed representation of the relevant information within a
document conditioned by a question. Moreover, the authors also did extensive
experimentation and found that 10 [PAGE] tokens per page were the best fit for
the MP-DocVQA [451] dataset. We used similar hyperparameters, but DUDE
might require better fine-tuning of [PAGE] tokens since the images are more
visually rich with colored graphics and layouts. The hierarchical processing of
documents with a meaningful visual component is a promising avenue for future
research.

5.6.1.4 Diagnosis of LLM Results

The reasoning for including these LLMs as baselines stems from our question:
“Does advanced text understanding suffice for solving DUDE?". Our results
for diagnostic categories reveal some strengths and weaknesses of LLMs in the
DocVQA task setting.

Strengths GPT3 trumps all other tested models for list-type questions
(ANLS=36-40%), which can be explained by the extractive nature of these
questions. After 4-shot fine-tuning, ChatGPT (4-shot) is better than all other
tested baselines in answering not-answerable questions (ANLS=77.45%). This
can partly explain the appeal of this particular GPT checkpoint in recent times.
GPT3 (4-shot) outperforms (ANLS=52.51%) other tested baselines on questions
from the ‘complexity multi-hop’ category such as What city name appears the
most often in the timetables?.

Weaknesses Compared to another (more simple text-only generative baseline,
T5-base-512 (ANLS=47%), LLMs perform two times worse on abstractive
questions (ANLS=22%). Closer analysis reveals that LLMs (even after 4-shot
fine-tuning) predict abstractive questions to be Not-answerable in 55% of cases
(in reality: 10%). Operations such as arithmetic, counting, and comparisons
remain generally elusive skills (<25%ANLS).

Both LLMs we tested scored significantly lower than the human baseline in
questions that require visual understanding, with an average ANLS score of
21%. This is understandable because these are text-only models.

While LLMs’ zero-shot performance is relatively high, we note that DUDE
consists of public-license documents from the web, which potentially might have
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been included in the LLMs’ pretraining corpus.

5.6.2 Assessing Confidence

ECE measures calibration of confidence, whereas AURC assesses both
performance and confidence ranking [193] (more detail Section 2.2.3). The
latter results in an appropriate metric to select the best model in real-world
applications, where wrong predictions can yield undesired scenarios, which could
be prevented by manually revising low-confidence answers.

Interestingly, T5-base-512 scores better on calibration (ECE=10.82) than T5-2D-
large-8K, the baseline with the highest ANLS, yet worse calibration (ECE=14.4).
In general, it seems calibration worsens when extending the maximum sequence
length, whereas adding 2D position embeddings only positively affects ANLS.
From the baselines tested, T5-2D-large-8K achieves the highest AURC.

Another interesting result comes from analyzing the calibration of models
evaluated using the Concat strategy vs. Max Conf. strategy. In the main paper,
we reported results for the model with the relative best ANLS. Thanks to our
varied set of evaluation metrics, we discover that Max Conf. overall results in
poor calibration (see Table 5.4), whereas considering ANLS, there is not always
a clear winning strategy. This shows that predicting each page separately and
necessarily assuming conditional independence across pages is not a reliable
strategy for multipage DocVQA.

5.7 DUDE Competition Results

5.7.1 Submitted Methods

Overall, 6 methods from 3 different participants were submitted for the proposed
tasks in the DUDE competition. To avoid cherry-picking from considering all
submissions of individual participants, we consider only the last submission
(accentuated) for the final ranking. All the methods followed an encoder-decoder
architecture, which is a standard choice for VQA when abstractive questions are
involved. Specifically, the submitted methods are mostly based on T5-base [383]
as the decoder. For this reason, we include the T5-base baseline to compare how
the participant methods improved on it. A short description of each method
can be found in Table 5.5.

Two very recent state-of-the-art architectures, UDOP and HiVT5, have been
extensively leveraged by participants. The former is geared toward improved
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Model ANLS ECE AURC
BertQA MPDocVQA Concat 29.8 13.83 43.28
BertQA MPDocVQA MaxConf 32.18 28.93 48.73
BigBird MPDocVQA Concat 30.67 25.07 47.2
BigBird MPDocVQA MaxConf 29.38 50.79 56.81

LayoutLMv3 MPDocVQA Concat 22.61 13.19 57.11
LayoutLMv3 MPDocVQA MaxConf 25.27 31.31 58.54
Longformer MPDocVQA Concat 33.45 22.21 45.83
Longformer MPDocVQA MaxConf 28.67 48.6 58.11

T5 MPDocVQA Concat 34.37 18.97 47.31
T5 MPDocVQA MaxConf 37.56 23.73 46.69

T5-base Concat-0 25.62 20.05 62.25
T5-base MaxConf-0 22.21 39.47 58.89

Table 5.4. Comparison of baselines using Concat or Max Conf strategies.

document page representations, while the latter targets multipage document
representations. In their method reports, the UDOP-based models by Lenovo
Research mention calculating confidence by multiplying the maximum softmax
score of decoded output tokens with two additional post-processing rules: a)
predicted not-answerable questions confidence is set to 1, b) when abstaining,
confidence is set to 0.

5.7.2 Performance Analysis

Table 5.6 reports the competition results ranking comparing the submitted
methods’ performance on the test set. Higher ANLS and AUROC values
indicate better performance, while lower ECE and AURC values signify
improved calibration and confidence ranking. According to the findings, the
UDOP+BLIP2+GPT approach attains the highest ANLS score (50.02), achieving
the best calibration and OOD (out-of-distribution) detection performance. In a
direct comparison of the MMT5 and HiVT5+modules methods, the former shows
a higher ANLS score, yet did not provide any confidence estimates.

Thus, the overall winner is UDOP+BLIP2+GPT by Lenovo Research. Their
submitted methods (ranked by highest ANLS) also differentiate themselves by
their additional attention to confidence estimation. Based on the numbers in
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Method Description
T5-base
(ours)

T5-base [383] fine-tuned on DUDE (AWS OCR), with a delimiter
combining list answers into a single string, and replacing not-
answerable questions with ’none’.

Lenovo Research
UDOP(M) Ensemble (M=10) of UDOP [443] (794M each) models without

self-supervised pretraining, only fine-tuned in two stages: 1) SP-
DocVQA [450] and MP-DocVQA [451], and 2) DUDE (switching
between Azure and AWS OCR).

UDOP
+BLIP2

UDOP(M=1) with integrated BLIP2 [260] predictions to optimize
the image encoder and additional page number features.

UDOP
+BLIP2+
GPT

UDOP(M=1) and BLIP2 visual encoder with ChatGPT to
generate Python-like modular programs to decompose questions
for improved predictions [160, 437].

Upstage AI
MMT5 Multimodal T5 pretrained in two stages: single-page (ScienceQA

[403], VQAonBD2023 [385], HotpotQA [508], SP-DocVQA) with
objectives (masked language modeling (MLM) and next sentence
prediction (NSP)), multipage (MP-DocVQA and DUDE) with
three objectives (MLM, NSP, page order matching). Fine-tuning
on DUDE with answers per page combined for final output.

Infrrd.AI
HiVT5 Hi-VT5 [451] with 20 <PAGE> tokens pretrained with private

document collection (no information provided) using span masking
objective [204]. Fine-tuned with MP-DocVQA and DUDE.

HiVT5
+modules

Hi-VT5 extended with token/object embeddings for a variety
of modular document understanding subtasks (detection: table
structure, signatures, logo, stamp, checkbox; KIE: generic named
entities; classification: font style).

Table 5.5. Short descriptions of the methods participating in the DUDE competition,
in order of submission. The last submitted method is considered for the final ranking.

the table, several interesting observations can be made to support the suggested
future directions and propose additional experiments:

• ANLS. The integration of UDOP, BLIP2, and ChatGPT contributes to the
method’s superior overall performance in answering different question
types.
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Answer Calibration OOD Detection ANLS / answer type
Method ANLS ↑ ECE ↓ AURC ↓ AUROC ↑ Ex Abs Li NA
UDOP+BLIP+GPT 50.02 22.40 42.10 87.44 51.86 48.32 28.22 62.04
MMT5 37.90 59.31 59.31 50.00 41.55 40.24 20.21 34.67
HiVT5+modules 35.59 28.03 46.03 51.24 30.95 35.15 11.76 52.50

Table 5.6. Summary of Method performance on the DUDE test set. Average ANLS
results per question/answer type are abbreviated as (Abs)tractive, (Ex)tractive,
(N)ot-(A)nswerable, (Li)st. (*) All scalars are scaled between 0 and 100 for readability.

• ECE, AURC. Integrating UDOP, BLIP2 visual encoder, and ChatGPT
for question decomposition contributes to the method’s performance in
handling uncertainty across various question types.

• Abstractive. The top performance of UDOP+BLIP2+GPT in abstractive
questions reveals the potential of combining the UDOP ensemble, BLIP2
visual encoder, and ChatGPT to enable abstract reasoning and synthesis
of information beyond simple extraction.

• List. The performance of UDOP+BLIP2+GPT in list-based questions
suggests that incorporating page number features can enhance the model’s
capability to process and generate list information, which might be spread
across pages.

Figure 5.8 visualizes an overview of the performance of each submitted method
respective to diagnostic subset samples matching a certain diagnostic category.
The models generally struggle with operations involving counting, arithmetic,
normalization, and comparisons. As expected, models have higher performance
when dealing with simpler questions (complexity simple) compared to more
complex questions (complexity multi-hop, complexity other hard, and complexity
meta). Models tend to perform better when handling evidence in the form of
plain text (evidence plain) compared to other forms of evidence, such as visual
charts, maps, or signatures. Performance across models is notably lower for
tasks involving lists compared to other question types. Models show varying
performance when dealing with different types of forms (e.g., date, numeric,
other, proper).

Figure 5.10 studies the ability of the competitors’ methods to answer questions
respective to increasingly longer documents. We observe a significant drop
in ANLS when aggregating scores over gradually longer documents. This is
expected as the longer the document is, the more probable that the answer will
either be located on a later page or rely on a long-range dependency between
the tokens (e.g., a multi-hop question). Strikingly, all methods’ scores, except
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Figure 5.8. We report the average ANLS per diagnostic category for each of the
submitted methods vs. human and a baseline method T5-base. Since the diagnostic
dataset contains a different number of samples per diagnostic category, we added error
bars representing 95% confidence intervals. This helps visually determine statistically
significant differences.

Hi-VT5+modules, drop significantly for questions on 2-page documents. This is
likely to have the root cause in the standard input size of T5-based methods
equal to 512 tokens, covering roughly 1 page.
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Figure 5.9. A histogram (bins=8, matching ANLS-threshold of 0.5) of the average
ANLS rate per QA pair when summing ANLS scores over competitor methods.

Figure 5.10. Left: A histogram over the number of questions relative to the number of
pages in the document (limited to 20 pages). Right: A line plot of the average ANLS
score per QA pair: – documents of length at least (x-axis) pages.

Figure 5.9 analyzes the correlation of errors over competitor methods. A large
portion of QA pairs is predicted completely wrong (ANLS-rate = 0) by all
competitor methods. This can have many plausible causes: a) by all sharing
a similar decoder (T5), methods suffer from similar deficiencies, b) some QA
pairs are too complex for current SOTA competitor methods, particularly
questions requiring more complex reasoning or unique document-specific layout
processing. To further analyze this phenomenon, we sample qualitative examples
with different ANLS rates (Appendix B.1).
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5.8 Chapter Conclusion

In conclusion, this chapter introduces a new large-scale multipaged, multi-
domain, multi-industry Document Visual Question Answering Benchmark for
document understanding. Our dataset is adjusted to the real-world environment
where we need to process long documents and understand different types of
documents. The benchmark includes visual semantics such as tables, charts,
figures, lists, checkboxes, stamps, and more, which are essential for real-world
document understanding. The performance of SOTA textual and multimodal
models still lags behind human performance, indicating the need for further
improvement in visual understanding for DU models. Nevertheless, we believe
evaluating systems on DUDE could inspire new architectures and methods.

Limitations. As our approach is closer to real-world industrial applications,
and enables models to recognize and understand new unseen data without
the need for re-training, it does come with some limitations and constraining
factors, including the use of only English language documents. Future work
could address these limitations and expand the benchmark to include other
languages. Moreover, although our dataset can be considered large-scale, it still
represents a relatively small sample size of the plethora of documents that exist
in the real world.

As a core contribution of DUDE, we wanted to emphasize the importance of
evaluation beyond mere predictive performance. DUDE offers an interesting
and varied test bed for the evaluation of novel calibration and selective QA
approaches (e.g., [96, 273]). While this was not explicitly attempted in this
iteration of the competition, we hope that future work will consider testing
their methods against DUDE.

Future of the Shared Task As the competition evolves, we hope that DUDE
will serve as an essential platform for pushing the frontiers of research and
driving innovation in the DU field. Currently, our competition focuses on
English language documents, which means we miss out on the potential of
incorporating multilingual data. An ideal extension for future iterations of the
shared task would be to introduce multilingualism, which our framework can
accommodate, provided that source documents are readily available. However,
this would also require specifying language qualifications for annotation experts.
Moreover, one could automate part of the data collection process and annotation
process by allowing the best-performing competition system to validate the
aptitude and complexity of human-proposed QA pairs.
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Chapter 6

DistilDoc: Knowledge
Distillation for Visually-Rich
Document Applications

The contents of this chapter come from a publication under review at CVPR
2024 [471]:

Jordy Van Landeghem, Subhajit Maity, Ayan Banerjee, Matthew B Blaschko,
Marie-Francine Moens, Josep Llados, and Sanket Biswas. DistilDoc: Knowledge
Distillation for Visually-Rich Document Applications. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (under
review), 2024

This is an external collaboration with Subhajit Maity, Ayan Bannerjee, Josep
Llados, and Sanket Biswas. The work was conceived during a research visit at
the Computer Vision Center in Barcelona, Spain.
Disclosing the work done by the authors other than supervisors:

• Jordy Van Landeghem created the project’s scope, implemented and
performed all DIC and downstream DocVQA experiments, including
training DLA teacher models, connecting the DLA inference and
evaluation, and wrote the manuscript with supplementary.

• Subhajit Maity and Ayan Bannerjee built the DLA architectures and
performed the DLA-KD experiments.

• Sanket Biswas brought the team together and helped with related work
and the introduction.
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This chapter focuses on efficiency via knowledge-distillation (KD) model
compression for document understanding (DU) tasks. While DU research is
dependent on increasingly sophisticated and cumbersome models, the field has
neglected to study efficiency via model compression, referring to any technology
transforming large and complex models into smaller streamlined models with
similar performance [548]. Here, we design a KD experimentation methodology
for more lean, performant models on DU tasks that are integral within larger
task pipelines, specifically document image classification (DIC) and document
layout analysis (DLA).

We carefully selected KD strategies (response-based, feature-based) for distilling
knowledge to and from backbones with different architectures (ResNet, ViT,
DiT) and capacities (base-small-tiny). We study what affects the teacher-
student knowledge gap and find that some methods (tuned vanilla KD, MSE,
SimKD with an apt projector) can consistently outperform supervised student
training. Furthermore, we design a downstream task setup to evaluate the
robustness of distilled DLA models on zero-shot layout-aware document visual
question answering (DocVQA).

DLA-KD experiments result in a large mean average precision (mAP) knowledge
gap, which unpredictably translates to downstream robustness, accentuating
the need to further explore how to efficiently obtain more semantic document
layout awareness.

This chapter motivates the need for more efficient DU models, especially for
VRD tasks, and provides a benchmarking framework for future research on KD
for DU tasks. Additionally, it motivates being smart about when to use which
modality when the downstream task has a certain modality-bias (e.g., DocVQA
is a text-centric task, whereas DLA is more vision-centric). Finally, it links to
efforts in DUDE to use LLMs for DU, with the focus here on incorporating
layout information from distilled DLA models into the LLMs.

6.1 Introduction

Visually-rich Document Understanding (DU) has attracted increasing interest
over the last few years. It involves multiple tasks such as document image
classification (DIC) [165, 195, 210, 284], key information extraction (KIE) [197,
272, 296, 422, 433], document layout analysis (DLA) [35, 36, 80, 362, 544] and
document visual question answering (VQA) [100, 309, 310, 450]. Current SOTA
DU models [153, 187] solve the task by using modern OCR engines to read the
text and then combine them with spatial features to predict the page layout and
structure. However, these multimodal architectures come with the following
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Figure 6.1. DistilDoc presents the first framework to investigate the potential of
KD-based DLA model compression to enrich LLM prompts with logical layout
structure to practically and efficiently improve downstream applications such as
DocVQA.

drawbacks: 1) They rely primarily on Large Language Models (LLMs) [542]
pretrained on millions of samples which depend more on OCR text quality than
visual features/document structure; 2) can be computationally heavier due to
the need to process and fuse information from different modalities; and 3) may
perform poorly in domains with poor OCR results or on low-resource languages.

Therefore, this work focuses on single-modality, vision-only architectures that
can be finetuned for handling VRDs in tasks involving understanding visual-
layout semantics such as tables, titles, paragraphs, figures, etc. DLA is a useful
preliminary step in a document processing workflow [35, 80], holding the key
to enhancing practical downstream DU tasks such as DIC, KIE, and VQA.
DLA can impart logical layout structure, beyond geometric layout from OCR
[164], and structured context to the document, to enable more accurate content
extraction and interpretation. A recent DU competition [469] has pleaded to
bridge the gap between DLA and DocVQA by introducing layout-navigating or
multi-region questions.

To handle the computational demand of modality/task-specific models,
knowledge distillation (KD) [21, 150, 178, 394] can prove an effective approach
to obtain efficient modules for later re-use in enriching LLM document inputs.
Teacher model compression has the potential to make student models that
improve over direct finetuning, also making them practical for deployment
with resource-constrained devices or for faster real-time inference. The field of
Document AI [79] is engaged with representing and understanding VRDs, but
thus far has not explored KD-based model compression for improved efficiency
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and uncertainty estimation [126].

This work investigates the potential of enriching VRDs with logical layout
structure derived from effective DLA model compression using KD methods to
practically and efficiently improve downstream DU applications. The nature
of the (document) dataset has a major impact on the KD process [434], which
required motivated choices (regarding dataset usage [14, 165, 362], architectures,
weight initialization [259], KD methods [63, 67, 170, 178, 183, 540], evaluation,
downstream procedure [482], etc.) in designing our experimental methodology
of KD benchmarking for DU tasks (DIC, DLA). This allows us to investigate
aspects affecting teacher-student knowledge/capacity/initialization gaps.

The key contributions of the paper are twofold:

I. We are the first to design, apply, and open-source an experimental methodology
for comprehensively benchmarking KD-based model compression on DU tasks
involving VRDs (DIC and DLA).

II. We design a novel evaluation procedure based on the downstream task of
zero-shot layout-aware DocVQA to quantify the robustness of distilled DLA
models.

Nevertheless, our contributions go beyond mere KD-based compression
benchmarking, promoting logical layout analysis over geometric layout to
enhance the generalization of DU models toward unseen documents with diverse
and complex layouts, as demonstrated in Figure 6.1.

6.2 Related Work

Efficiency and Model Compression Efficiency through model compression
is gaining relevance with the increasing parameter size and complexity of
models such as LLMs [556]. Although KD is a prominent technique for model
compression, several alternative approaches are worth mentioning. Quantization
has been recently re-discovered in the context of LLMs with LoRA [184] and Q-
LoRA [93] that achieves substantial model compression with minimal accuracy
degradation. Advances have been made also in vision-and-language [57, 518]
and more recently for vision transformer (ViT) training [269]. However, its
effectiveness also depends on some key factors, including the model architecture,
data type, bit-width, and the training recipes employed. In this direction, neural
architecture search (NAS) became an important field of study [55, 279, 280, 363].
Popular alternatives include model weight pruning [131, 288, 554] that benefits
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strongly from joint usage with other efficiency and model compression techniques;
adaptive inference with multi-exit architectures [501, 547], which are promising
yet highly dependent on early exit network design and uncertainty estimation.
KD-based training [364] complements the aforementioned techniques, leading
to potentially more accurate model exits and pruning. Moreover, KD strategies
involve overall simpler design choices, depending mostly on the availability of a
large teacher model trained on domain data of interest. Therefore, we prioritize
KD-based model compression and efficiency for practical DU applications.

Knowledge Distillation KD strategies can be categorized into three main
categories: response-based KD [6, 21, 178, 314, 509, 541] seeks to match the final
layer predictions of the teacher model; feature-based KD [8, 62, 67, 175, 221, 394]
aims to mimic features extracted from intermediate hidden layers of the deep
network and relation-based KD [355, 356, 447, 511] which exploits the relations
between different layers or sampled data points. However, the latter approach
is more geared toward pixel-based semantic segmentation tasks. While feature-
based KD is more versatile, it is more expensive and harder to implement
than soft teacher predictions. While offline methods [178, 394] consider an
existing frozen teacher model, online methods [61, 538] update both student
and teacher networks jointly. Self-distillation [22, 528] represents a special case
of online KD, which employs the same network as both the teacher and student,
progressively outperforming the network’s performance, albeit disregarding the
aim of efficiency.

Our work’s scope will be offline KD schemes, with a single converged teacher
(vs. intermediate checkpoints [479] or ensembles [515]), single modality inputs
(vision only), with three different feature extraction backbones (ResNets, ViT
and a self-supervised pretrained document foundation model DiT [259]). Our
study seeks to extend the empirical utility of KD to popular DU tasks (DIC &
DLA) with a versatile benchmarking framework to ensure future compatibility,
fostering KD-based DU model compression research.

Practical and Efficient Document Understanding Recent efforts to represent
layout and document structure have gained substantial recognition, particularly
with the incorporation of structural information into LLMs. The LayoutLM
family [187, 502, 503] and GeoLayoutLM [296] laid the foundation of using 2D
positional information of text (word blocks) tokens obtained from OCR as a
geometric layout representation for the input. Recent work [416] has further
enhanced this 2D representation by incorporating text lines or text blocks
as layout groups inside the OCR text tokens. [482] further experiment with
structure-preserving OCR, that uses appropriate spaces and line breaks as an
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Figure 6.2. Proposed experimental methodology to comprehensively study all
aspects (left-to-right) that impact KD methods (response, feature; projectors) adapted
for VDU task specifics (architecture, weight initialization, pretraining & finetuning
datasets, student capacity). Downstream setups evaluate the robustness of distilled
students.

LLM input, thereby improving the ability to capture layout and structural cues
for zero-shot DocVQA [309, 310] tasks. [153, 263] seek to represent layout as
region-level proposal features, representing logical layout elements like title,
paragraph, figure, tables, etc.) as in the DLA task. To further study the utility of
logical layout representations, [498] address asking questions conditioned inside
a specific region of a page, improving upon the design of DocVQA that provides
too many in-line questions (>80%). More recently, PDFTriage [400] generates a
structured metadata representation of born-digital documents, extracting both
geometric and logical layout elements like section text, figure captions, headers,
and tables for a more precise QA approach. DUDE [468] offers a testing bed for
DocVQA on multipage, multi-type documents with varying layouts, including
questions conditioned on layout navigation, e.g., ‘Which pages have tables?’.

Our explorations focus on making the most of the logical layout features obtained
from the multi-domain DLA benchmark, DocLayNet [362]. We build upon
the aforementioned advancements and explore how incorporating document
structure can enhance the performance of downstream task models, aligning
with the trend of enriching LLMs with rich-text prompting and layout-aware
representations.

6.3 Experimental Setup

This Section documents the experimental methodology established in this work
as visualized in Figure 6.2, including datasets, architectures and backbones
for teacher and student models, KD methods, and evaluation metrics for the
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tasks and distillation effectiveness. The goal is to provide a framework for
future research on KD for DU tasks and allow pinpoint comparisons on KD
aspects such as teacher-student knowledge and capacity gap, teacher-pretraining,
student network initialization, etc.

Table 6.1. Dataset usage for DIC, DLA, and downstream tasks. Symbols: P =
pretraining, DP = document pretraining, T = teacher training, S = student training,
* = subsampling, E = teacher/student evaluation, D: downstream evaluation

Dataset Task Usage Size # Cls
ImageNet [90] DIC P 1.28M 1000
IIT-CDIP [252] DIC DP,T,S 11M /
Tobacco-3482[232] DIC T,S,E 3482 10
RVL-CDIP[165] DIC DP,T,E 400K 16
PRImA[14] DLA T,S,E 400 6
DocLayNet[362] DLA T,S,E 80.8K 11
RVL-CDIP-N [241] DIC D 1K 12
SP-DocVQA [450] VQA D 12.8K 50K
Infographic [310] VQA D 5.5K 30K

6.3.1 Datasets

Tab. 6.1 lists all datasets used (in)directly for the experiments. As there is
no existing methodology for KD experimentation on the tasks involved, we
motivate the design choices:

DIC We benchmark results on both Tobacco-3482 (original train-val-test splits
800-200-2482) and RVL-CDIP. The originally large training size of RVL-CDIP
hinders experimentation (long iteration cycles), which is why we create a
subsampled student training set, RVL-CDIP1k, by randomly selecting 1K images
per class. By evaluating the full RVL-CDIP test set, we provide a fair evaluation
of the usefulness of KD methods, while avoiding the cumbersomeness of student
finetuning on such a large dataset.

While RVL-CDIP is the de facto standard for measuring performance on
the task of document classification, the literature [242, 470] has reported
several undesirable characteristics such as (near-)duplicates causing substantial
overlap between train and test distributions. We complement independently
and identically distributed (i.i.d.) test set evaluation with benchmarking on
RVL-CDIP-N [241], which is a covariate shift dataset allowing us to evaluate
the robustness of KD methods to domain shift, which is a common problem in
real-world applications.
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DLA We benchmark results on DocLayNet (reporting evaluation on validation
set following common practice) and PRImA. The former is a large-scale human-
annotated dataset with 81K images and 11 categories of logical layout elements,
while the latter is a smaller dataset with 400 images and 6 classes. DocLayNet
contains a wide layout variability with six diverse document types (patents,
scientific, legal, reports, tenders) in English. They have been hand-annotated
by trained experts, making it the gold standard for DLA. Alternatively,
Publaynet [544] or MS-COCO [274] benchmarks have been used in pretraining
DLA models. However, the former lacks diversity as it only contains documents
from the scientific domain while the latter is a more common object detection
benchmark for natural scenes.

We consider a mirrored data setup for both tasks, with one larger benchmark
dataset (RVL-CDIP, DocLayNet) and a smaller, easier dataset (Tobacco-3482,
PRImA). This allows us to compare KD efficacy with more or less accurate
teachers over tasks.

6.3.2 Architectures and Backbones

We evaluated three backbone architectures, representing different approaches
to the tasks of DIC and DLA.

Backbones Residual Network (ResNet) [167]: A supervised pretrained CNN-
based architecture that is a staple in image recognition.

Vision Transformer (ViT) [101]: A supervised pretrained Transformer-based
architecture that is effective for a variety of CV tasks.

Document Image Transformer (DiT) [259]: A self-supervised pretrained
architecture specifically designed for DU tasks, as it was pretrained on 11M
document images from IIT-CDIP with a Masked Image Modeling objective, as
inspired by BeiT [24].

Specific to DLA, we use the Mask R-CNN [168] meta-architecture for instance
segmentation with two different backbones, i) classic ResNets and ii) ViT, with
the latter more challenging to integrate [267].

Historically, CNNs have been more popular for DLA due to their accuracy,
speed, and multiple optimizations built into the meta-architectures (involving
a backbone, neck, and head). However, recent work is pointing to the
potential of ViT as plain (non-hierarchical) object detectors [268]. Compared
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to Transformers, CNNs have strong inductive biases of translation equivariance
and locality, a fundamental difference that is less explored in a KD context
[33].

Network Architecture and Initialization Document images are very different
from natural images, yet most available vision backbones of different sizes are
pretrained on the latter, except for DiT. Nevertheless, ViTs seem to struggle to
learn a function when starting from random initialization, both as teachers and
student networks. Therefore, we will use ImageNet pretrained checkpoints for
all models considered, even for student network initialization.

Teacher Models While there are many model variants with different capacities
for each of the backbones (Tab. D.1), we opt for the Base variant for
Transformers, which arguably is most common. We consider ResNet-101 as it
has the attractive property of having similar hidden layers’ output dimensionality
as the next smaller variant, ResNet-50.

The comparison of ViT-B and DiT-B allows us to evaluate the effects of different
pretraining schemes (supervised, self-supervised) and how this affects knowledge
transfer.

Student Models For DIC, we consider ViT-small and ViT-tiny, as well as a
CNN-based architecture (ResNet-50), whereas, for DLA, we consider Mask-
RCNN with a Resnet-50 backbone and a ViT-tiny backbone. Due to the
computational demand of training instance segmentation models, we only
consider the ViT-tiny backbone for the student model, therefore not making
it possible to analyze KD methods for an increasing teacher-student capacity
gap. While it would have made an interesting comparison, DiT has not been
released in a smaller variant than DiT-B, and given the computational demand of
pretraining DiT on the entire IIT-CDIP dataset containing 42 million document
images, we did not consider it for student training. One might regard the
knowledge transfer of DiT-B to a smaller ViT-(S/T) as potentially resulting in
DiT-(S/T), yet the ImageNet or random initialization of the student network
differs substantially from that of the self-supervised DiT weight space.
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6.3.3 KD Methods

The basic approach of knowledge distillation consists of transferring ’knowledge’
from a cumbersome teacher model f t to a lightweight student model fs, where
f : X → ∆Y is a function mapping input data X and outputting a conditional
probability distribution P (y′|x) over output labels y′ ∈ Y = [K] for K classes
[368]. When this model compression approach is done effectively, the student
model will be more efficient in terms of memory and computation. The top-1
class prediction is ŷ = argmaxy′∈Y [f(X)]′y, with p̂ = maxy′ [f(X)]′y the posterior
probability. For convenience, [f̃(x)]k denotes the k-th element of the logits
vector f̃(x) ∈ RK , which when normalized with softmax f(x) = σ

(
f̃(x)

)
=

exp(f̃(x)/τ)∑K
k=1 exp([f̃(x)]k/τ)

. Let each function f be parameterized by θ holding all

trainable parameters of the function, separable into a variable L layers, where
fl(x) denotes the l-th layer output, e.g., the penultimate layer output fL−1(x).

While there exists a wealth of ever-growing KD methods, we have carefully
chosen a combination of simplistic methods mimicking the basic principles
of KD (i, iv), more advanced KD methods that target specific improvements
such as penalizing the non-target class logits (ii), or distilling the knowledge of
intermediate layers (iv), and methods that take a step back on established KD
practices by optimizing mean squared error (MSE) between teacher-student
logits or reusing the teacher classifier (ii, vi).

Every method will be explained with loss functions, additional hyperparameters,
and training parameters. (i) Vanilla KD [178] optimizes a linear combination
of hard-target student cross-entropy (CE) loss and Kullback Leibler (KL)
divergence loss with soft-target teacher predictions, including loss KD
hyperparameters α ∈ [0, 1] and the temperature τ > 1, which gives more
weight to student loss and controls the softness of teacher logits, respectively.

LKD = αLCE (y, ŷs)︸ ︷︷ ︸
τ=1

+(1− α) τ2LKL
(
f t(x), fs(x)

)︸ ︷︷ ︸
τ>1

(ii) MSE loss between teacher-student logit vectors enables direct logit-level
matching [217]

LMSE =
∥∥f̃s (x)− f̃ t (x)

∥∥2
2

(iii) NKD Normalized KD loss [509] decouples vanilla KD into a normalized
(indicated N ) combination of the target (c ∈ Y) loss and the non-target loss in
CE form, where γ ∈ [0, 1] is a trade-off hyperparameter and τ the temperature.
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LNKD = [f t(x)]c[f̃s(x)]c︸ ︷︷ ︸
target

−γ · τ2 ·
K∑
k 6=c
N
(
[f t(x)]τk

) (
N
(
[f̃s(x)]τk

))
︸ ︷︷ ︸

non-target

(iv) FitNet [394] enables feature-based KD by minimizing the Euclidean
distance between the intermediate feature maps of the teacher and student
networks (i.e., MSE loss). A trainable projector P(·) (e.g., a linear projection
layer) is required if the dimensionality of the hint layer(s) h ∈ [1, L+ 1] outputs
does not correspond to that of the student, There are no hyperparameters,
except for projector design and where to place hint layers in the teacher network.

(v)ReviewKD [67] uses multi-stage information (multiple layers) of the teacher
to supervise one student layer. The knowledge review mechanism is too complex
to cover here as it involves multiple modules (residual learning, attention-based
fusion projector, and a hierarchical context loss). This work claimed the first
exploration of KD for instance segmentation, which is why we include it only
for DLA.

(vi) SimKD [63] is a hybrid KD method that combines the advantages of
response-based and feature-based KD. On the one hand, it reuses the pretrained,
frozen teacher classifier for student inference (f tL(P(fsL−1(x))), and on the
other hand, it adopts MSE for feature alignment (following a projector) of the
penultimate layer feature-representations. Note that the former classification
output is not used for training or loss calculation, only the latter projected
feature map alignment.

LSimKD = LMSE
(
P
(
fsL−1 (x)

)
, f tL−1 (x)

)
While the projector can safely be discarded for (iv,v) to obtain cost-free student
inference, SimKD requires both the trained projector and teacher classifier
to be used (and stored) for student inference. SimKD originally proposed a
CNN-based projector between teacher and student feature maps (assuming
C(hannels) x H(eight) x W (idth) inputs). For compatibility with ViT-based
architectures, we contribute a novel variant of SimKD, which uses a linear
projection layer on the [CLS] token at the penultimate layer. Alternatively, we
draw upon [77, Theorem 1] that a multi-head self-attention layer can simulate a
convolutional layer, subsequently reshaping the penultimate hidden layer output
(ignoring [CLS] pooling) to (C x W x H), where C is the hidden size (e.g.,
197(-1) for ViT-B), and W,H are equal to the number of patches (e.g., 14 for
ViT-B with patch size 16 and image sizes 224x224), finally applying the original
CNN projector to obtain the projected feature maps.
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Task considerations The number of KD methods considered between the tasks
differs, as some methods were not designed for use in a meta-architecture like
Mask R-CNN. Response-based methods using logits are not capable of providing
knowledge for object localization (e.g., region proposal network head), making
feature mimicking of vital importance. Moreover, the performance of instance
segmentation highly depends on the quality of deep features to locate interested
objects [509, 541], which is why we only consider feature-based KD methods
for DLA (v, vi). When deciding upon KD methods to include, the literature
reported ReviewKD as the feature-based SOTA, NKD as the response-based
SOTA, and SimKD as the hybrid SOTA on image classification (CIFAR-100).

6.3.4 Evaluation

Metrics Predictive performance evaluation for DIC follows standard practice
with accuracy, whereas we forego the F1 score as the classes are balanced.
For DLA, we use the standard metrics of mean average precision (mAP) @
intersection over union (IOU) [0.50:0.95] of bounding boxes.

Efficiency evaluation considers the combination of parameter size and FLOPS
(floating point operations) to be representative enough to compare distilled
models.

Following calls in the DU literature [468] to establish calibration and
confidence ranking as defaults to the evaluation methodology, we include
Expected Calibration Error (ECE) [156, 332, 340] to evaluate top-1 prediction
miscalibration and Area-Under-Risk-Coverage-Curve (AURC) [138, 193] to
measure the error rate over selective (% of test set) accuracy (detailed in
Section 2.2.3).

Covariate shift DIC-KD evaluation To evaluate the robustness of distilled
models, we consider evaluating the impact of domain shift on the downstream
task of DIC. Luckily, there exists a dataset similar to RVL-CDIP in terms of
document types and classes, yet different in terms of document sources and
label distribution. This dataset is called RVL-CDIP-N [241], and we will use it
to evaluate the robustness of distilled models.
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6.3.5 DLA-enriched LLM prompting

Downstream DLA-KD evaluation An important objective of this work is to
demonstrate the usefulness of DLA predictions in downstream VRD tasks. As
SOTA DLA models are often as cumbersome (parameter size, GFLOPS) as the
downstream models, this motivates the need for KD to obtain more efficient
DLA predictors that could be used to enrich document inputs with logical
layout information.

While we focus on visual-only document inputs in benchmarking KD, we take
the opportunity to benchmark DLA as part of a zero-shot DocVQA task setup
with text-only LLMs [482], which can benefit from additional layout information
when answering questions that appear in certain logical elements (’what is the
first column header of Table 3’, ’what is the title of the document?’). Similarly,
it could benefit to know what falls within an infographic picture or legend;
which is why we benchmark on SP-DocVQA and InfographicVQA, with the
latter containing more visually-rich information. As a model of choice, we
have opted for Llama-2-7b-chat [452] with 4-bit quantization to keep GPU
memory requirements to a minimum, while still performing sufficiently reliably.
Evaluation is done using ANLS [39, 468] on predicted answers vs. ground
truths.

The prompt design follows [482] with a task instruction and placeholders for
the question and the document input, the latter depending on the prompt
parameterization (see Tab. 6.2). Possible values are plain, single-spaced OCR
tokens, space, tokens placed heuristically with whitespaces in their approximate
position, or DLA, which adds start and end tags such as <Table> and </Title>
to indicate logical layout as predicted by a DLA model. A pseudo-algorithm
(Sec. 6.3.5) details the procedure to generate DLA-enriched prompts.

KIE is regarded as an important downstream DU task, yet we believe (as
supported by [166]) that it would benefit less from DLA, due to most information
being organized as key-value pairs with only local context relevance.

6.4 Results & Discussion

DLA-KD This work investigates different SOTA KD methods and integrates
them into the DLA framework with ResNet and ViT feature extraction
backbones. KD in DLA poses significant challenges owing to the intricate
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Algorithm 1: Construction of DLA-enriched prompts pDLA

Input: A finite set Dtest = {(x(i), y(i))}Ni=1 of holdout data, consisting of document
images x(i) and corresponding labels y(i)

Output: Tokenized DLA-enriched prompts pDLA
Parameters : ζiou: IoU-threshold for layout-token boxes (default: 0.3)
Parameters : Ignore-labels: DLA labels to ignore for enrichment (default: {‘Text’})
Input :A document image v

1 Require: A trained DLA model and an OCR engine
2 (1) Feed image to DLA model to obtain labeled layout boxes
3 {(bj , cj ,mj)}Jj=1 ← DLA(v) // Boxes, classes, metadata

4 Feed image to OCR engine to obtain tokens and boxes
5 u = {(wt)}Tt=1 , s =

{(
x1
t , y

1
t , x

2
t , y

2
t

)}T
t=1
← OCR(v′) // Tokens and token-boxes

6 Standardize layout boxes to similar xy-format
7 for j ← 1 to J do
8 bj ← StandardizeBbox (bj) // Standardize to xy-format

9 if OCR image dims 6= DLA image dims then
// Precomputed OCR (DUE) results can be reused, yet OCR images can have higher resolution

10 Interpolate layout boxes to token-boxes
11 bj ← InterpolateBbox (bj , v, v′)

// Interpolate layout box to OCR image size

12 (2) Find closest start and end token-boxes
Input : a set of DLA predictions DLA(v), a set of OCR tokens u, a set of OCR

token-boxes s
Output : an updated set of OCR tokens û, a set of OCR token-boxes ŝ

13 for j ← 1 to J do
14 S ← (0,∞); E ← (−1,∞) // Initialize start and end with dummy index and distance values

15 for t← 1 to T do
// Multiple relaxing heuristics to find closest token-box to layout-box

16 if cj ∈ Ignore-labels then
17 continue
18 if not FullyContains(bj , st) or IntersectionOverUnion(bj , st) > ζiou then

// Token-box fully contained within layout-box or IoU > threshold

19 continue
// Minimal Laplacian distance to cornerpoint

20 S ← min(S, (t,Laplacian(bj , st))) // Laplacian distance to top-left corner

21 E ← min(E, (t,Laplacian(bj , st))) // Laplacian distance to bottom-right corner

22 (3) Insert DLA labels before and after closest tokens
Input :The original sets of OCR tokens u, token-boxes s, and start and end

indices S and E
Output :Updated sets of OCR tokens û and token-boxes ŝ

23 C ← 0 // Initialize token insertion counter

24 û, ŝ← u, s // Initialize to be updated OCR tokens û and token-boxes ŝ

25 I ←SortAndLabel(S,E) // sort start and end token together by index and add label type

26 for j ← 1 to |I| do
27 if Ij is a start token then
28 û← insert <cj> at Ij + C // Insert label such as <Table> before token

29 ŝ← insert bj at Ij + C
30 C ← C + 1
31 if Ij is an end token then
32 û← insert </cj> at Ij + C + 1 // Insert label such as </Table> at next token

33 ŝ← insert bj at Ij + C + 1
34 C ← C + 1

35 return û, ŝ // Tokens and token-boxes with DLA labels to be used in prompt design of [482]
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Table 6.2. Prompt design following [482], with placeholders depending on
parameterization of document input (plain, space, DLA).

#l Prompt
1 You are asked to answer questions asked on a document image.
2 The answers to questions are short text spans taken verbatim from the document.
3 This means that the answers comprise a set of contiguous text tokens present in the document.
4 Document:
5 {Layout Aware Document placeholder}
6 Question: {Question placeholder}
7
8 Directly extract the answer to the question from the document with as few words as possible.
9
10 Answer: {}

Table 6.3. Results for KD methods applied on DocLayNet [362].

Teacher Student Method mAP↑ Flops↓ Params↓ Im/s↑
ViT-B - Supervised 65.65 107G 114M 20
R101 - Supervised 73.56 60G 63M 12
- ViT-T Supervised 62.85 68G 26M 14
- R50 Supervised 72.43 33G 44M 12

R101 R50 SimKD 62.71 29G 44M 21
ReviewKD 61.17 37G 44M 19

ViT-B ViT-T SimKD 57.51 42G 26M 22
ReviewKD 57.2 84G 26M 17

nature of detection, introducing new obstacles related to regression, region
proposals, and sparser label volumes [64]. As motivated in Sec. 6.3.3, we
prioritize feature-based KD methods, with results on DocLayNet in Tab. 6.3.
The performance comparison in terms of mean average precision mAP and
FLOP counts show that Resnet-50 students with SimKD are overall superior in

Table 6.4. Validation ANLS (scaled to %) of Llama-2-7b-chat [452] on SP-DocVQA
[309] (top) and InfographicVQA [310] (bottom), where (if marked) the prompt is
enriched with DLA predictions from a ViT-B-based Mask-RCNN.

space task DLA ANLSval Image/Photo Yes/No Figure/diagram Form Free_text Handwritten Layout Others Table/list

X X X 61.2 44.58 49.13 40.28 68.95 68.39 52.81 61.38 56.44 56.7
7 X X 58.39 44.43 41.67 34.81 66.38 67.82 52.1 59.19 55.91 52.79
X X 7 62.46 42.95 49.43 40.93 71.15 70.59 55.87 61.87 61.05 58.31
7 X 7 57.63 45.38 51.52 34.97 67.88 69.71 53.19 55.51 55.78 53.81

space task DLA ANLSval Arithmetic Comparison Counting Figure Map Multi-span Abs Q span Single span Table/list Text Visual/layout

X X X 28.05 9.92 25.28 7.83 26.28 19.0 21.85 8.82 41.84 33.54 25.57 34.6 29.17
7 X X 28.36 14.93 29.15 7.64 27.05 19.0 19.41 11.21 46.87 33.35 25.56 34.59 26.69
X X 7 27.97 9.78 25.13 6.99 25.93 21.04 22.33 8.2 43.36 33.53 25.76 35.06 27.47
7 X 7 29.08 14.15 26.94 11.35 27.52 19.1 19.79 12.79 48.44 33.79 26.17 35.24 26.39
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terms of both efficiency and detection, while ViT-Tiny student has the smallest
number of parameters with comparable performance in terms of mAP.

)However, one can observe a generally large knowledge gap between the teacher
and student model (≈ 8% for ViT and ≈ 10% for the ResNets) as the crucial
details about the document object boundaries, shapes, and sizes can get lost
during the compression process. Not only that, KD performance with a ViT
backbone is worse compared to Resnets due to (i) the attention overhead, i.e.,
transferring this attention-based knowledge to a student model requires careful
consideration of how to distill these complex attention patterns effectively, and
(ii) initialization and hyperparameter sensitivity, e.g., finding an appropriate
domain pretrained checkpoint and setting patch sizes, attention heads, can affect
the KD process, requiring more delicate tuning. The CNN layers of Resnets are,
on another hand, permutation invariant and provide more flexibility towards
KD.

KD methods are hard to integrate for object detection frameworks, especially
when it comes to ViTs where there is no intermediate multi-scaled FPN module.
Our contribution lies in extending the hybrid SimKD [63] method for the
DLA task and also showing competitive analysis with the existing SOTA
ReviewKD [67].

Downstream DLA-KD Tab. 6.4 reports results on the validation sets as these
are hyper-annotated with evidence, question and answer types, and operations,
allowing for more finegrained analysis. Detail results of distilled DLA-enriched
prompts are available in Appendix D.4.

On SP-DocVQA, DLA-enriched prompting (without spacing) improves from
57.63 → 58.39, whereas (with spacing) the improvement (27.97 → 28.05) is
less pronounced on InfographicVQA, yet DLA predictions are still useful in
this setting, as also evidenced by questions involving ’Visual/Layout’. This is
likely due to the more visual and layout complexity of the dataset, wherefore
DLA predictions are less accurate. Strikingly, spacing performs generally worse
on Infographics, pointing to the heuristic nature of the structure-preserving
OCR algorithm of [482] that fails on structurally complex documents with
visually-situated language, charts with axes labels, legends, etc.

The objective of these experiments was to make (distilled) DLA output useful
in enriching text-only LLMs with more semantic layout information beyond
geometric-spatial relations. For every setting tested, the task instruction
(Sec. 6.3.5) is vital (else ANLS < 5%) in the zero-shot setting. We hypothesize
that for SP-DocVQA line/row/column-level key-value pair recognition suffices
for attaining good performance, thus expecting little benefit from DLA-enriched
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prompts. However, as these experiments are bound to the layout classes as
pre-defined in DocLayNet, we believe that richer layout information, closer to
semantic regions (e.g., an address block instead of an OCR block), and including
specification of common document objects such as stamps, logos, watermarks,
should benefit downstream DU tasks.

Table 6.5. Performance per KD method over metrics averaged over architectures on
RVL-CDIP dataset (In-Domain) and RVL-CDIP-N dataset (Out-Of-Distribution).

DIC-KD This task benchmark reports on experiments with 3 backbones,
2 student architectures (except 1 for Resnet), and 6 KD methods each.
Tab. 6.6 details the ViT and DiT results, whereas the ResNet results (following
similar trends) are available in Appendix D. The same set of experiments was
repeated for randomly initialized students (Tabs. D.12 and D.13). Given the
comprehensive scope of the DIC experiments, we can make claims regarding the
overall most performant KD method, the teacher-student capacity gap, and the
architecture-pretraining gap. ViT-Small student distilled with the SimKD [63]
method performs best in terms of accuracy and AURC. Note that the best
ViT-Tiny student with only 5.5M parameters reaches 83% accuracy with SimKD,
only 2.9% behind the best ViT-Small student with 86M parameters, showing the
potential of advanced KD methods in retaining accuracy at such a large capacity
gap. SimKD performs admirably in terms of accuracy, sometimes (depending
on the projector type (MLP and CNN)) as well as the supervised teacher. In
terms of AURC, NKD and MSE approaches are best-performing, which are
both response-based methods. Regarding the pretraining gap, as shown in
Tab. 6.6, results indicate that a self-supervised teacher like DiT does not meet
expectations when distilling the knowledge to a ViT-based student pretrained
with ImageNet weights. This could be attributed to the large representation gap
in the feature space between the RVL-CDIP pretrained and ImageNet pretrained
models. However, evaluation under covariate shift on RVL-CDIP-N (Tab. D.8)
demonstrates DiT-based students (distilled with response-based KD strategies)
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to outperform ViT→ViT students, pointing to the potential of self-supervision
for robustness to distribution shift.

Table 6.6. Results of different KD strategies benchmarked for D/ViT-B teachers
applied on the RVL-CDIP dataset.

ViT-B
Student Method ACC AURC ECE

– ViT-B 0.891 0.017 0.034
– ViT-S 0.853 0.030 0.058
– ViT-T 0.822 0.040 0.043

ViT-S Vanilla [τ = 2.5, α = 0.5] 0.854 0.028 0.049
NKD [τ = 1, γ = 1.5] 0.840 0.036 0.074

MSE 0.855 0.028 0.051
SimKD [CLS+MLP] 0.859 0.028 0.287

SimKD [CNN] 0.847 0.062 0.141
FitNet [middle] 0.843 0.048 0.141

ViT-T Vanilla [τ = 2.5, α =] 0.825 0.038 0.058
NKD [τ = 1, γ = 1.5] 0.815 0.046 0.094

MSE 0.823 0.040 0.066
SimKD [CLS+MLP] 0.830 0.095 0.163

SimKD [CNN] 0.829 0.056 0.150
FitNet [middle] 0.812 0.051 0.153

DiT-B
Student Method ACC AURC ECE

– DiT-B 0.933 0.075 0.010
– ViT-S 0.831 0.042 0.056
– ViT-T 0.801 0.053 0.047

ViT-S Vanilla [τ = 2.5, α = 0.5] 0.831 0.060 0.080
NKD [τ = 1, γ = 1.5] 0.790 0.058 0.040

MSE 0.831 0.060 0.082
SimKD [CLS+MLP] 0.838 0.087 0.438

SimKD [CNN] 0.851 0.048 0.136
FitNet [middle] 0.775 0.063 0.077

ViT-T Vanilla [τ = 2.5, α =] 0.801 0.064 0.081
NKD [τ = 1, γ = 1.5] 0.772 0.066 0.041

MSE 0.795 0.076 0.081
SimKD [CLS+MLP] 0.816 0.104 0.439

SimKD [CNN] 0.832 0.056 0.152
FitNet [middle] 0.753 0.077 0.054

Covariate shift DIC-KD To answer if certain KD methods harm a student
model’s robustness to covariate shift, we plot results per KD method, averaged
over the 3 backbones on the (Tab. 6.5). This re-establishes the superiority
of SimKD [CNN] in terms of accuracy, both ID and OOD, yet due to poor
calibration, it loses gain on the teacher in terms of AURC. Strikingly, MSE
attained the lowest OOD performance, whereas it was a solid ID choice. Tab. D.8
provides more detail on the performance of the different KD methods on RVL-
CDIP-N, where we observe that grouped per KD strategy response-based is
superior over all metrics.

6.5 Chapter Conclusion

KD-based model compression has been a popular technique in recent years,
albeit DU research has not paid much attention to efficiency. Our work explores
a limited scope of KD for DU at scale, revealing great potential for creating
efficient counterparts of cumbersome DLA models used today. Specifically, we
show that SimKD is a particularly strong KD method, always outperforming
vanilla KD and even obtaining a 16x smaller model retaining >90% relative
accuracy. Moreover, we investigate the potential of DLA for enriching document
inputs in downstream DocVQA tasks. Traditionally, DocVQA has relied on plain
OCR text. While structure-preserving OCR provides a notion of geometric
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layout for downstream use, DLA was never considered before for the same
purpose, yet our experiments show promise.

The more comprehensive benchmarking of KD methods in DIC with ID
evaluation and a covariate shift protocol reveals interesting observations
regarding the feature representation and weight initialization gap between
DiT (documents) and ViT (natural images), albeit self-supervision for students
is more robust in the OOD setting. Our framework enables informed selection of
compressed models and directs several interesting explorations: how pretraining
objectives impact the distillation process, if different layout representations
(e.g., [15, 187, 263, 443, 555]) allow for a more robust downstream transfer, etc.

Limitations While we primarily use DocLayNet, it remains the DLA dataset
with the most diversity in layout elements both in terms of categories and shape
or size. However, the downstream DocVQA results urge for more diversity
in terms of document types, domains, and objects (e.g., layout objects such
as logos, watermarks, stamps, signatures). Thus, the community is in dire
need of a dataset diverse enough to guarantee a performance improvement
downstream. Moreover, multimodal KD was not considered in this work,
holding promise for more efficient, all-round DU models. The downstream task
was not tested on [468] as multipage documents are more complex to benchmark
with limited sequence length LLMs. Also, DLA being a fairly complicated
instance segmentation task, makes it difficult to adapt for KD-based model
compression, ruling out some KD methods. This calls for a better experimental
framework and architectural modeling to boost the exploration of KD in DLA, in
turn, incubating downstream advances in processing and understanding VRDs.





Chapter 7

Conclusion

This final chapter summarizes the work done in this thesis. Additionally, we
formulate the key contributions and propose some exciting avenues for future
research.

7.1 Summary

To summarize, this thesis contains the following contributions (C) and key
findings (→), respective to the research questions from the introduction:

When tested in realistic language data distributions on various text classification tasks,
how well do PUQ methods fare in NLP?

In which settings are PUQ methods most useful, i.e., which failure sources/distribution
shifts are the most sensitive?

C 1. We conduct a benchmarking study of established PUQ methods applied
to six real-world text classification datasets with a focus on model robustness
and uncertainty quality. This large-scale study comes with advanced statistical
analysis to validate significant differences between methods and datasets.

C 2. We propose a practical experimental methodology to test relevant
distributions shifts —cross-domain classification and novelty detection—,
resulting in a better understanding of the individual shortcomings of PUQ
methods.

165
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→ General behavior of PUQ methods does not hold over different datasets. We
do observe specific correlations between PUQ methods and the problem setting
representing task characteristics, for which we formulated practical takeaways.
This reconfirms the need for modality to task-specific benchmarking of PUQ
methods.

→ In general, PUQ methods are sensitive to distribution shifts and methods that
exhibit better in-domain calibration also exhibit better robustness to novel class
shifts. The tested setting of cross-domain classification under covariate shift
is the most challenging for PUQ methods. This is evident from relatively low
AUROC scores due to the presence of comparably similar linguistic patterns
across domains.

How can we obtain better PUQ estimates without overrelying on computationally
prohibitive methods, e.g., Deep Ensemble [238]?

C 3. We propose novel combinations of PUQ methods, providing both well-
motivated intuition and empirical evidence for the complementary benefits of
combining different posterior approximation procedures.

→ Our proposed hybrid PUQ methods improve over singular methods, both in in-
domain calibration, novelty detection, and out-of-domain detection. In particular,
we show that the combination of Deep Ensemble with Concrete Dropout
demonstrates higher diversity in posterior samples and superior performance,
even at a smaller ensemble size compared to a Deep Ensemble.

How important are certain prior, neural architecture or hyperparameter influences on the
quality of PUQ estimation?

C 4. We conduct a range of ablation experiments to investigate the influence of
prior, neural architecture and hyperparameter choices on the quality of PUQ
estimation. In particular, the number of stochastic posterior samples, the dropout
rate, and the architecture are shown to have a significant impact on the quality
of PUQ estimation.



SUMMARY 167

→ The combination of posterior geometry and weight-based priors proves to be
a powerful combination for PUQ estimation, with the Deep Ensemble and
Concrete Dropout methods as the best-performing methods in our benchmark.
Nevertheless, it is important to consider adapting the dropout rate to the text
classification task at hand, which individually and in an ensemble impacts model
robustness and uncertainty quality.

→ Contrary to previous work, we find that pretrained transformers in NLP
severely underperform in novelty detection compared to 1D CNNs, limiting the
applicability of transfer learning when distribution shift from novel classes can
be expected.

How severe is the problem of hallucination and control in LLMs when evaluated in a
selective, free-form DocVQA task setting?

C 5. We design the DUDE dataset with this task setting in mind, incorporating
a large set of unanswerable questions that are realistic and relevant to the
document’s content.

→ Hallucination and control remain severe problems in LLMs, with a large fraction
of unanswerable questions being answered with high confidence. When trained on
a large set of unanswerable questions, LLMs improve on identifying unanswerable
questions, yet at the expense of abstractive, harder questions to which they
become overcautious (e.g., ChatGPT predicting more than 1/2 of abstractive
questions as unanswerable). With longer context, LLMs are also more likely
to hallucinate answers. Overall, results are lagging behind the human baseline
performance on DUDE, indicating that LLMs are still far from being able to
reason about documents in their entirety without control measures.
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How can we iteratively close the gap between research and practice in DU?

C 6. We take stock of the balance between research and applications in document
classification, a prototypical DU task, and we identify the main challenges that
are stalling progress in the field, with a focus on data construction and evaluation
methodology.

C 7. We propose a novel formalization of multipage document classification
scenarios, which we use to construct two novel datasets, RVL-CDIP_MP and
RVL-CDIP-N_MP, that are more realistic and more challenging than their
single-page counterparts.

C 8. We conduct an insightful experimental analysis of the novel datasets.

→ The experimental analysis reveals that current SOTA models are not able to
leverage the additional context provided by multipage documents and that the
performance gap between single-page and multipage document classification
is still large. Ablation experiments show the promise of advancing multipage
document representation learning and inference.

→ Major dataset construction efforts are required to bridge the currently existing
gap and be able to rely on benchmarks for transfer to real-world applications.
In particular, we identify the need for more realistic and more challenging
datasets, about e.g., the type and diversity of document data, and the variety
and quality of label sets, as well as the need for more comprehensive evaluation
methodologies.
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How can we design a resource that comprehensively challenges the state-of-the-art?
Which DU aspects are most challenging for current state-of-the-art LLMs? How can these
be incorporated in a benchmark to allow proper measurements of future improvements?

C 9. We have designed a completely novel benchmark from the ground up,
DUDE, collecting 40K QA pairs for 5K documents, constructing a multi-
faceted (multipage (µ = 6), multi-domain (±15), multi-type (±200), multi-
QA (extractive, abstractive, list, unanswerable), multi-task (DIC, KIE, DLA,
DOD, etc.), multi-OCR (Tesseract, Azure, AWS), multi-source, multi-stage (<5)
annotations) dataset to foster research on generic DU, bypassing long context
restrictions and evaluating the reliability and robustness of DU technology, as
close as possible to real-world requirements.

C 10. The dataset construction approach of DUDE is based on a set of principles
that we have formulated, which we believe are essential for a comprehensive
benchmark for generic DU. More specifically, leveraging the DocVQA task
paradigm and learning paradigm of Multi-Domain Long-Tailed Recognition
allowed us to both incentivize harder questions on visual/layout semantics,
layout navigation, or multi-step reasoning, while organically obtaining questions
relevant to the document type and instance.

C 11. We have conducted our own baseline experiments of DUDE, evaluating the
performance of SOTA DU models on the different facets of DUDE, as well as the
reliability and robustness of LLMs in the context of DU. Next, we have organized
a competition to challenge the community’s best, additionally incorporating
OOD detection and selective generation to evaluate CSFs on two common failure
sources.
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→ The best results attain ANLS <= 50% with our baseline T5-2D (8K context)
scoring 46%, the competition winner improves 4% absolute by leveraging
multimodal LLMs (BLIP2 and ChatGPT). Generally, stronger performance
is expected from models that incorporate layout understanding and reasoning
over multiple pages. Nevertheless, diagnostic results prove that the current
SOTA still suffers on questions with visual evidence (only half of the human
performance) or any reasoning operations (counting, comparison, etc.). With
the rise of multimodal LLMs, better solutions are coming, yet due to its designed
complexity, DUDE might remain “the benchmark to beat" for a long time.

→ Even while DUDE presents a great test bed for the challenge of long-context
processing (Section 2.3.4.1), the evaluated models have not yet reached the point
where they can fully leverage the additional context. This is a clear indication
that more research is needed in the direction of efficient processing of long,
structured documents.

→ We find that the quality of confidence estimation worsens with longer context,
potentially from having to consider more possible answers. We also find that
models using a maximum confidence strategy over answers generated per page
results in substantially worse calibration. These interactions between multiple
DU challenges prove the usefulness of incorporating and evaluating these jointly
in a benchmark.

How can we efficiently infuse LLMs with semantic layout awareness for more focused
information extraction?

To what degree can model compression resolve the problem of efficiency in processing
documents?

C 12. We propose a novel experimental methodology to investigate enrichment
of VRDs with semantic layout structure derived from effective distillation of
DLA models to practically and efficiently improve downstream DU applications.
This includes evaluation under covariate shift of KD methods in DIC and a
downstream evaluation setup to evaluate the robustness of distilled DLA models
on zero-shot layout-aware DocVQA.

C 13. We present the first application of KD to visual document tasks (DIC,
DLA), investigating the teacher-student knowledge gap in KD-based model
compression methods (response and feature-based) with task architectures
involving different inductive biases (CNN vs. ViT), pretraining (self-supervised),
student initialization, and capacities (base-small-tiny).
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→ While we have promoted the use of semantic layout over geometric layout for
enriching LLM prompts, this only results in limited improvements in performance,
which we attribute to either the zero-shot evaluation setup or the limited subset
of layout classes and domain shift from the DLA training data (DocLayNet).
In some cases, e.g., questions involving visual/layout evidence, DLA-enriched
prompting proves more useful.

→ KD-based model compression is very effective in reducing model size, while
maintaining accuracy at large capacity gaps, e.g., a strong student is SimKD
ViT-tiny, which retains relatively 93% of teacher accuracy, while being 16x
smaller. Ablations show how the teacher-student knowledge gap is affected by
the inductive biases of the task architecture, the pretraining of the student, the
student initialization, and the student capacity. For example, a self-supervised
teacher provides more robust students when evaluated under covariate shift.
Nevertheless, model compression is but one tool in a larger toolbox for efficient
processing of documents, which we believe is a key challenge going hand-to-hand
with efficient longer-context modeling, for future research.

As this thesis was conducted in an applied research environment and keeping in
mind that nowadays DL research is primarily empirical, the contributions of our
work have been very focused on datasets and the experimental methodology,
rather than on novel algorithms, which more often than not present mere
incremental improvements on the state-of-the-art. Nevertheless, we believe
that the proposed datasets and experimental methodologies are of great value
to the community, as they provide a more realistic and more challenging test
bed for future DU research. We are happy to see the proposed datasets and
experimental methodologies increasingly being adopted by the community and
hopefully this will foster research on more efficient and closer to real-world
document processing, which will ultimately lead to more reliable and robust
DU technology.

7.2 Perspectives For Future Research

This Section discusses some exciting research opportunities left for future
research. First, we present a curated set of research questions particular to
PUQ, calibration, and failure prediction, which when relevant are linked to DU
applications. Next, we take a futuristic look at the design of a fully-fledged
IA-DU solution, dreaming up the ultimate dataset and system design for DU.
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7.2.1 Open Problems In Reliability & Robustness

Recent advancements in LLMs have brought a lot of groundbreaking
improvements to the field of DU, yet the reliability of LLMs is still far from being
solved. This is further increased by API-based services or closed-source LLMs
[344], which are to be treated as black-boxes without access to model internals or
token-level output logits, making it hard to apply most PUQ methods. Popular
white-box approaches include verbalized probabilities [273] or semantic entropy
[226] for taking into account semantic equivalence or specificity (e.g., Where
was the 2023 International Conference on Computer Vision held? → In Paris vs.
In the capital of France vs. In Europe). Specific to selective generation, when
knowledge on a topic is limited, it can be hard to censor LLM outputs (even
when finetuning further with human feedback) or evaluate abstention reliably
(e.g., I don’t know vs. I don’t care vs. ‘’).

[111] implement a framework bundling a battery of white-box and black-box
methods for LLM confidence estimation in text generation, yet it still requires
human inspection of generated text together with the confidence score, which
is not very scalable for large-scale document processing. This ties into the
evaluation crisis of LLMs, which is a topic of active research [137]. In the short
term, it might suffice to reward models that predict the full distribution of
human judgments or learn human preferences for generated text. However, how
can we expect models “to do what humans do” when even humans disagree or are
not consistent in their judgments? Alternative approaches can be to rationalize
judgments, attribute or ground evidence used for the judgment, or ask for
clarifications when needed. In the long term, we should move beyond human
evaluation, which is expensive, time-consuming, and not scalable. Important
explorations include prompt chaining (Please give a confidence between 0 and 1
about how certain you are this is the correct answer) or self-evaluation [207, 391]
to induce reflections on the quality of LLM outputs.

Beyond the potentially infinite, though countable output spaces of generative
tasks, there exists an opportunity to study calibration for specific output
spaces, e.g., sequence-structured in the context of sequence tagging or restricted
sequence-to-sequence tasks. Moreover, calibration metrics and methods can
be adapted to the specific task or output space such as structured prediction
[227], named entity recognition [222], object detection and segmentation [85,
234, 350] etc. With most works (if at all) reporting top-1 miscalibration, efficient
estimation of “stronger" calibration notions is a crucial area of study to inform
the derivation of calibrated regularized loss functions [370]. On the more
theoretical side, it remains vital to investigate the link between non-convex
optimization (e.g., flat minima) and calibration, as well as when optimizing a
proper loss yields calibration [42, 549].
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Selective prediction has been garnering increased attention thanks to intensively
comprehensive benchmarks [127, 193], yet these have (again) been focused on
vision problems and architectures, inviting the same level of benchmarking on
alternative modalities and tasks. To the extent of our knowledge there exists no
work on extending selective prediction methodology to multi-task settings (e.g.,
consider the typical combination of document classification and KIE) requiring
a more complex learned CSF (for different output spaces) or a combination of
multiple CSFs with multiple thresholding. Similar to calibration, differentiable
loss functions for failure prediction are an open problem. More theoretical
questions include the relationship between stronger notions of calibration and
confidence ranking, as well as the link between feature space disentanglement and
CSF ranking [552]. In the low-data regime, sample-efficient failure prediction
is an open problem, which could leverage connections to semi-supervised and
active learning [112].

7.2.2 A Future-Proof Design Of IA-DU

Downstream datasets are a key component of any practical, supervised ML
solution, yet they are often overlooked in expectation of decent zero-shot
performance with LLMs, which are trained on large-scale, generic language
datasets, such as Common Crawl or the Pile [130]. While these datasets are very
useful for pretraining general language understanding, they are not sufficient
for all possible downstream tasks. This is especially true for DU, where text is
but one of the modalities to be considered. As part of the conclusion to this
thesis, we first discuss how to obtain the ultimate dataset for generic DU, and
next we detail the design of a fully-fledged IA-DU solution.

7.2.2.1 The ‘Ultimate’ DU Dataset?

Arguably, a core contribution of this thesis is the design of the DUDE dataset,
which we believe is a step in the right direction toward the ultimate dataset for
generic DU. Top-of-mind extensions of DUDE include: multilingual or cross-
lingual documents and questions; answer and evidence grounding to improve
evaluation and interpretability; and question decomposition and simplification.

Finding a complete answer to the question of the ultimate DU dataset would be
transformative to DU technology, yet here we can only provide some pointers,
discussed in the structure of goal, starting points, and aspects to target.
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Goal DU requires reasoning over documents in their entirety, which is a very
complex task with the aforementioned challenges. With the current technology,
this involves learning document representations that are both rich and compact,
and that can be used to answer any question about the document. Consider
how challenging this is when most relevant questions are either about the
intentionality of the document’s author or the way a user interacts with it,
hinting at a potential observer’s paradox in future data collection. For example,
on a car invoice, an accountant would ask What is the total amount due?, or
Is this a valid invoice with correct taxation?, while a customer would ask How
much do I finally have to pay?, or the insurance broker What is the chassis
identifier to link the omnium coverage to?. A model should be able to capture
all these nuances about the complexity of a document which could be seen as
the expectation of all possible relevant questions that can be asked on it, while
also being able to generalize to unseen documents and questions. Therefore,
the goal of the ultimate DU dataset is to provide a test bed for evaluating
the progress in commonsense reasoning on documents from real-world
interactions, to which we hypothesize that the scale and depth of supervision
are vital.

Starting points The ultimate DU dataset should be designed with the
aforementioned goal in mind, yet some seminal ML datasets could be inspiring.
While the ‘ImageNet moment’ is etched in everyone’s memory, MS COCO
[274] was arguably a more impactful dataset thanks to its large-scale, diverse,
and high-quality nature combining multiple tasks (image captioning, object
detection, semantic segmentation, etc.). To build the equivalent of MS COCO
in document understanding, DUDE offers a good starting point, under some
conditions and necessary extensions. An important aspect concerns ground
truth collection for DocVQA and the complexity and specificity of questions
and answers, which has been approached differently by recent works: DUDE
uses a multi-stage approach to collect a large set of minimally constrained,
human-generated questions under the MDLT paradigm, which were afterward
annotated with diagnostic categories; PDFTriage [400] pre-defines question
types and collects a small set of human-generated questions; DocEdit [311]
establishes a pre-defined taxonomy and tests language as a universal UI to
interact with the hierarchical, discrete structure of documents. The extent to
which the collected QA pairs constitute a representative sample of the space of
all possible and relevant questions that can be asked on a document instance is
an open problem, which can be approached by (A) extending and scaling up
existing practices or (B) deepening supervision for models to generalize better
from limited inputs.
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A. Scale We identify three targets to scale up: (I) document collection, (II)
question collection and validation, and (III) question-answer generation.

(I) Throughout the document dataset construction, the goal is to collect a
large set of diverse document types and instances, differing on all modalities:
language, layout, visual, etc., and additional meta-criteria: industry, language,
type, etc. The document collection approach taken in DUDE was a fairly
artisanal process: based on experience, we designed an industry-document
taxonomy, which we used to collect a large set of document types and instances,
also taking into account the presence of different visual semantics or document
objects e.g., handwriting, stamps, watermarks, address blocks, etc. We leveraged
a semi-automatically created keyword-style search (’Please list 30 common retail
document types with their synonyms like Credit memos - {"credit notes", "credit
slips", "refund slips"}’) on public document collections, and validated diversity
post-hoc in terms of modality-specific features (TF-IDF or ResNet features) vs.
other datasets.

A more scalable approach would be to leverage a cluster-based diverse sampling
from larger document collections, such as Common Crawl [460]. While this
approach would be more scalable, it would be challenging to ensure that the
collected documents are diverse in terms of all modalities, which is a topic
to be investigated. Relevant caveats are the presence of duplicates, sensitive
information, and the need to balance language priors to not create Clever Hans
effects for models to later exploit [405]. An active topic of research is document
generation [169] or augmentation [304], which could fill the gap in document
diversity, yet it would be challenging to ensure that the generated documents
are both realistic and diverse. Seeing that business documents are hard to
obtain, one could backtrack to visually-situated language.

(II) To ensure that questions are specific to a document, and not testing language
understanding, cross-lingual questions could help counter reliance on language
priors. However, both multilingual documents and cross-lingual questions are
challenging to collect, as they require annotators capable of reading multiple
languages. How people interact (i.e., the questions asked) with documents
without being systematically observed is what makes for interesting data, yet it
is also the more challenging to collect. This is certainly true for subject-matter
experts from different industries (government, finance, legal, etc.) who are not
readily available for annotating documents. Naturally, as more documents
are being collected, one should define a strategy to scale up the number of
questions per document in a balanced way. Ideally, the number of questions per
document should be a function of the document complexity, which is another
open problem. Some basic strategies would be to (i) split questions evenly over
pages by chunked annotation, yet this would constrain multi-hop and naturally
complex questions, or (ii) to exploit the Gestalt principle [294], which states
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that the number of questions should be higher on heterogeneous elements in
a document. Finally, an untapped approach would be to generate questions
automatically, which is an open research challenge.

(III) QA generation holds promise to grow a large-scale dataset. A possible
approach would be to teach the current SOTA model on DUDE to generate
questions (given possible answers, predict questions) similar to those in the
training set. A harder problem is the generation of unanswerable questions,
which we found hard to even elicit from humans. Potential caveats are the
quality and factuality [303] of the generated questions. This might be improved
upon by first generating rich and compositional captions for a document relative
to the content and visual appearance, and then generating different questions
based on the descriptions, with both paraphrasing and backtranslation for
question variations and augmentations.

B. Supervision Depth The reasoning behind increasing the depth of
supervision is that we might be expecting too much, i.e., answering complex
questions involving multiple manipulations of document-instance and/or domain-
specific concepts based on a single set of reference answers, with a poor stimulus
[476], i.e., not providing enough, complex enough and diverse enough examples
for models to generalize well.

Accounting for every possible question will be impossible. A possible approach
inspired by MDLT and diagnostic categories in DUDE is to (i) decompose
questions in terms of the skills and concepts (Definitions 15 and 16) required
to answer it and pass this together as instructions; and (ii) hyperannotate
more explicit answers, with answer and evidence grounding for attribution,
better explaining the relations between primitives (skill-concept compositions).
Figure 7.1 illustrates an example of (ii), where the answer is decomposed into a
skill-concept composition, and the evidence is grounded to the relevant document
objects. Such rich supervision should help models to both discriminate known
skills and concepts and generalize better to new skill-concept compositions.
Although it would be expensive to obtain such supervision in large quantities,
the use of human-in-the-loop or active learning could reduce the annotation
burden.

Definition 15 [concept]. An abstract term to denote document visual objects
(atomic [cell, barcode] and molecular [table, chart, form]), and entities (generic
[document identifier, person, date] and domain-specific [invoice number, insured,
payment date]).

Definition 16 [skill]. Any manipulation [existence, counting, relation,
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Figure 7.1. Example of ground truth formatting for a question-answer pair in DUDE.

hasattribute, etc. ] of a concept, or a combination of involved concepts (evidence)
involved.

Our overall idea is similar to how [243] alludes to intelligence: “the ability
to decompose a problem into a set of skills and concepts, to reuse those skills
and concepts in new situations, or acquire new ones quickly”. The proposed
format would be a full-featured instruction tuning dataset, which has proven
very useful in other settings [404, 486] and which could be a valuable resource
for future research on instruction-based learning of already existing and future
DU tasks.

Naturally, all of this relies on the assumption that each question-answer pair
can be decomposed into skill-concept compositions, and that there exists an
exhaustive taxonomy of skills and concepts for DU, which thus far has not
been created. A possible approach would be to leverage existing resources
such as VerbNet [410] to define skills, or build an API for DocVQA similar to
[437, 535] to decompose questions into programs with subroutines, e.g., How
many of the contract’s pages have signatures? Counting([Navigation(document),
Existence(signature, page)]); and construct a complete taxonomy of document
concepts in both a bottom-up (human prior) and top-down (data-driven) fashion
to extend it over time with domain-specific concepts. Ideally, this taxonomy
should not be static at inference time, hinting at more research needed into
neuro-symbolic learning for dynamic knowledge graphs to assist in recognizing
and adding new concepts [32].

There are several fundamental questions that can be asked here “Is it needed to
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collect thousands of QA pair examples to learn a specific document skill-concept
composition, e.g., address block detection?” Recent works seem to suggest
not, indicating an emergent ability of the current best LLMs to find zero-shot
solutions to a broad range of analogy problems [486]. Finally, building ground
truth more amenable to advanced prompting and instruction-based learning
[248] will likely prove as useful as question decomposition has in semantic
parsing [189, 358, 525].

7.2.2.2 A Feature-complete IA-DU Solution?

The main takeaway of this thesis is that while more compute, more data and more
powerful algorithmic tools have allowed significant progress in DU, there is still a
long way to go toward the objective of reliable, robust, realistic, and efficient DU.
For now, a major component would be a general-purpose Transformer-based
stack for interfacing with a document through natural language. Most likely, this
would be a multimodal LLM pretrained with a variety of pretraining objectives
on the richest and largest possible corpus of documents and related data. When
zero-shot performance is not sufficient, it would be instruction finetuned on
new QA pairs, e.g., in the rich format proposed in Section 7.2.2.1, resulting in
efficient adapters that can be served concurrently on the same prediction model
[417]. However, this is not a complete solution as generative modeling brings
additional challenges (e.g., expensive pretraining, decoding-based inference,
confidence estimation, dependence on human evaluation, scalability).

Instead, we will focus here on another component of a complete solution, namely
a failure forecaster, which we believe to be equally important for bringing
LLMs closer to real-world applications. We envision this to be a lightweight
module separate from the prediction model, that could be easily fully retrained
and updated with new data, bypassing the risk of catastrophic forgetting and
the need for retraining the more cumbersome LLM. The failure forecaster should
predict the performance of the LLM on a given input (document, question,
metadata etc.) and output (answer). It can be a very simple (e.g., logistic
regression) or complex model (e.g., a large DNN), yet most of its complexity
resides in the feature modeling and subsequent learning of sources of uncertainty.
Our failure forecaster design is informed by [114]. We non-exhaustively identify
sources of failure or uncertainty that can be modeled by the failure forecaster:
(i) input uncertainty, (ii) output uncertainty, and (iii) distributional metrics.
We discuss each of these in turn.

(i) Before answering any question, the document instance should be analyzed
for inherent uncertainty or quality issues: e.g., is it born-digital or OCR, the
quality of OCR, readability metrics to capture how easy the document text
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is to read, the complexity of the layout graph, visual richness. Next, follows
the question analysis: e.g., specificity, complexity, ambiguity, relevance, and
novelty. Each of these can be measured by heuristic approximations such as the
number of tokens or entities, how many of the entities literally appear in the
document, the number of possible answers, the context size required to answer
the question, the semantic overlap between the question and the document, how
similar is the question to training data questions, the grammatical correctness,
and syntactic complexity. Finally, the metadata analysis: e.g., the number of
documents in the same domain, the number of documents in the same type, the
number of documents in the same language.

(ii) The output uncertainty can be modeled by the confidence of the LLM in
its predicted answer, which can be estimated by PUQ methods and a variety
of CSFs [111], which are hypothesized to capture complementary sources of
uncertainty. Specific to the answer, the same question-document aspects return
here, with additionally how extractive the answer is, the answer structure, and
paraphrasing diversity.

(iii) Feature representations of new documents, questions, and answers can be
assessed relative to their individual and joint distance to the training distribution
[477]. This will be quintessential for distributional shift detection.

A failure forecaster trained to predict the performance of the LLM on all
this information can be used to decide whether to abstain from answering,
ask for clarifications from the model or human, ask for additional context,
demand question rephrasing or a more clear document input, or even additional
metadata. Ultimately, this will be useful to improve reliability and robustness
for real-world IA-DU applications, where the risk of failure demands substantial
control.
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Appendix - PUQ

A Implementation Details

In this Section, we describe the implementation details for the different datasets,
architectures and inference methods used in our benchmark.

A.1 Software and Data

We have published our benchmarking software at https://github.com/Jordy-
VL/uncertainty-bench so that the community can continue to build on our
work. We have added detailed instructions for reproducibility and extensibility.
This allows anyone to test on a new dateset of interest, implement a new
uncertainty estimation method, or evaluate on our benchmark datasets.

A.2 Hyperparameter Defaults

For each baseline architecture and uncertainty method combination, we describe
hyperparameter values in detail for facilitating future replication.

Our choice of hyperparameter values for TextCNN is heavily based on [537], for
fine-tuning BERT on [94, 322] and we draw inspiration from [500] for uncertainty
estimation method parameters. We seek to restrict hyperparameters as much
as empirically plausible to 1 static setting over datasets per architecture.
We constrain the input vocabulary to the 20,000 most frequent words (30K for
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20news and AAPD), retain the original document lengths, remapping tokens with
a frequency lower than 3 to UNK and PAD tokens are masked throughout. For
TextCNN 300-D embeddings are uniformly initialized upon which three different
kernels (3,4,5) operate with 100 feature maps per kernel followed by a max
pooling operation. For BERT we tokenize and encode using the standard BERT
tokenizer with maximum sequence length determined per dataset [20news: 250,
CLINC: 50, IMDB: 350 and Reuters/AAPD: 200].

Following the MC Dropout procedure we apply dropout [431] with a rate of
0.5 after each non-linear weights layer. We found a global weight decay rate of
1e-4 [224, 293] to work well for TextCNN, whereas we disabled weight decay for
BERT since it overpenalized model complexity, resulting in vanishing gradients.
During training TextCNN, Adam optimizes cross-entropy or heteroscedastic
loss (see Section 3.3.2.4) with a learning rate of 1e-3 for 45 epochs on batches
of size 32. For fine-tuning BERT, we schedule the learning rate starting from
1e-5 to 1e-6 with batch size 16 and train for 20 epochs (longer than the original
recommendation, following [436]). We use early stopping conditioned on the
validation loss with sufficient epochs to ensure all models are trained until
convergence. Else the models might have learned to approximate well the mean
of the predictive posterior distribution, but not the variance. At evaluation
time, we estimate predictive mean and uncertainties by drawing T samples
from the approximated predictive posterior distribution or by averaging over
M models. We have empirically set T to 10 and for ensembles the number of
models M to 5.

B Practical Considerations

B.1 Take-home Summary

Concretely, for a multi-class problem with a large number of classes,
incorporating input-dependent data uncertainty improves accuracy and novelty
detection. With high label cardinality in multi-label classification, we
recommend ensembling for more reliable epistemic uncertainty estimation. More
generally, we advise against using MC Dropout if the dropout rate and weight
regularization are not fine-tuned for the problem at hand, drawing parallels to
dropout probability rates adaptively learned with Concrete Dropout.

Hyperparameter considerations We reiterate important hyperparameters
and reasonable defaults for text classification tasks similar to our benchmark
setup and applications of the above.
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• Dropout rate p: the original work suggested a fixed binary rate (p=0.5),
whereas our experiments indicate different rates are more applicable per
dataset. It is best to cross-validate layer-wise dropout probabilities for
any real-world application, where impossible it warrants the low effort of
incorporating Concrete Dropout, consequently reducing experimentation
time.

• Weight decay L2: best to start with small values [1e-6 - 1e-4] and fine-
tune accordingly. Take note to not apply global weight decay in case of
pretrained weights, which already have high weight magnitudes, possibly
impeding learning.

• MC Dropout T : a small number (T=10) of stochastic samples suffices,
if large number of classes, scale sub-linearly with K. T also applies to
the number of samples drawn to calculate heteroscedastic loss, so beware
increasing to too large values since it affects training compute.

• Ensemble size M : a total of (M=5) ensemble models is plenty, certainly
when combining with fine-tuned dropout rate at the individual model
level.

B.2 Compute vs. Performance Trade-off

Next to performance, practitioners are generally concerned with computational
and memory costs. [462] present similar concerns in the benchmarking of
uncertainty methods. Considering the cost of compute vs. storage, each
uncertainty method impacts both differently. Following [348], we present
computational and memory costs for evaluated methods symbolically (Big-
O), with m flops or storage for a trained model, l represents flops or storage for
the last layer, T denotes sampling or replications, and ι GP inducing points.

Table A.1. Compute and storage costs in Big-O notation [348] for uncertainty methods.

Method Compute/N Storage
Baseline m m

MC (Concrete) Dropout mT m
Heteroscedastic m+ l(T − 1) m(+l)
Deep Ensemble mT mT

cSGMCMC m mT
SNGP m+ ι2 m

Our experiments were carried out on a system with a Intel Core i7-10750H 2.6
GHz CPU and NVIDIA GeForce RTX 2070 Max-Q GPU.
Additionally, we provide an informative table with training (Table A.2) and test
(Table A.3) timings provided over all single models on CLINC-OOS.
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Table A.2. CLINC-OOS models with training timings (in seconds) per epoch and
total running time.

methods architecture train time/epoch epoch finished train runtime
Unregularized TextCNN 32 8 256
Regularized TextCNN 32 28 896
Heteroscedastic TextCNN 59 17 1003
Concrete Dropout TextCNN 35 12 420
Heteroscedastic Concrete Dropout TextCNN 58 10 580
Unregularized BERT 420 5 2100
Regularized BERT 691 11 7601
Heteroscedastic BERT 710 16 11360
Concrete Dropout BERT 679 9 6111
Heteroscedastic Concrete Dropout BERT 707 16 11312

Table A.3. CLINC-OOS models with inference timings presented in unit time for how
many batches or samples can be processed in 1 second wall-clock time over CPU and
GPU. For the short sequences of CLINC, both models allow a batch size of 32.

architecture method # batch (gpu) # sample (gpu) # batch (cpu) # sample (cpu)
TextCNN Unregularized 59.0 1891 63.0 2043
TextCNN Regularized 66.0 2134 60.0 1922
TextCNN MC Dropout 53.0 1708 32.0 1050
TextCNN Heteroscedastic 693.0 22176 482.0 15444
TextCNN MC Heteroscedastic 47.0 1525 38.0 1216
TextCNN Concrete Dropout 66.0 2130 40.0 1293
TextCNN MC Concrete Dropout 48.0 1541 25.0 827
TextCNN Heteroscedastic Concrete Dropout 756.0 24205 318.0 10197
TextCNN MC Heteroscedastic Concrete Dropout 48.0 1561 27.0 874
BERT Unregularized 6.0 223 0.8 25
BERT Regularized 9.0 306 0.8 26
BERT MC Dropout 0.9 28 0.1 2
BERT Heteroscedastic 10.0 325 0.8 26
BERT MC Heteroscedastic 1.0 31 0.1 2
BERT Concrete Dropout 7.0 245 0.9 27
BERT MC Concrete Dropout 1.0 30 0.1 2
BERT Heteroscedastic Concrete Dropout 6.0 218 0.9 27
BERT MC Heteroscedastic Concrete Dropout 0.9 30 0.1 2

C Detailed Experiment Results

C.1 Zoom-in Benchmark Evidence

In this Subsection we report additional evidence in support of our results, which
did not suit the main manuscript.

C.2 Absolute Benchmark Results

Next to reporting critical differences to analyze the relative performance of
uncertainty methods, we also report results as summary statistics, following the
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Figure A.1. Comparison with NLL(↓) for dataset-specific differences in method
performance.

methodology of [462]. Firstly, we report performance averaged over both runs
and datasets, with the standard deviation over datasets. We indicate the best
mean performance in bold. For various metrics the standard deviation is very
large, which shows that the average over datasets for our benchmark would be
a poor measure of central tendency. Since we benchmark on three multiclass
and two multilabel datasets, any aggregate would be biased towards multiclass
performance, hence why we specifically opted for rank and critical difference to
analyze relative performance of each method.

Additionally, we compute the performance averaged over datasets, with the
standard deviation over multiple runs for all individual models. All raw model
results are available at https://github.com/Jordy-VL/uncertainty-bench/
tree/main/experiments/raw_results. We refer to the original paper for the
larger detail tables with results averaged over datasets and runs.

https://github.com/Jordy-VL/uncertainty-bench/tree/main/experiments/raw_results
https://github.com/Jordy-VL/uncertainty-bench/tree/main/experiments/raw_results
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Figure A.2. We report the Pearson Correlation Coefficient (PCC) between uncertainty
values and binary variable ID-OOD for Amazon product review datasets. A higher
absolute correlation score points to stronger association of uncertainty and out-of-
domain detection. *Model Uncertainty (MU), Data Uncertainty (DU), Mutual
Information (MI).
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(a) Heteroscedastic Ensemble -
H

(b) MC Ensemble - S (c) Deep Ensemble Regularized
- MI

(d) Heteroscedastic CD Ensem-
ble - S

(e) Deep Ensemble - MU (f) MC Dropout - MU

(g) Heteroscedastic Ensemble -
H

(h) Concrete Dropout - S (i) MC Concrete Dropout - MU

(j) MC CD Ensemble - H (k) Concrete Dropout Ensem-
ble - S

(l) Deep Ensemble - H

(m) Deep Ensemble - MU (n) Heteroscedastic Ensemble -
MI

(o) MC Dropout - MI

Figure A.3. A selection of most interesting Gaussian kernel density plots over
(abbreviated) model setup metrics evaluated on all datasets in row order 20news
(a-c), CLINC150 (d-f), imdb (g-i), Reuters (j-l), AAPD (m-o). Each plot captures
probabilistic density over correct ID (green), incorrect ID (red) and OOD (purple).
From left to right, we have selected a high rank, middle rank, and low-rank method and
uncertainty quantity combination. The density estimates demonstrate clear empirical
difference over all datasets for various uncertainty quantities.
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A Existing DC Datasets

As the datasets from Table 2 did not satisfy large-scale benchmarking multipage
DC benchmarking requirements, we discuss them in supplementary for interested
readers.

Tobacco-3482 [232] is another subset of IIT-CDIP with fewer samples and a
smaller label set than RVL-CDIP.

Tobacco-800 [553] has been used for page stream segmentation ([494], similarly
defined as in [328]) as it contains consecutively numbered multipage business
documents.

NIST The NIST Structured Forms Database [98] consists of 5,590 binary
synthesized documents from 20 different classes of tax forms.

MARG The MARG (Medical Article Records Groundtruth) database [290] is
a layout-based classification benchmark containing 1553 documents which are
mainly the first pages of medical journals.

TAB [328] is a recently introduced page stream segmentation dataset targeting
binary classification to detect document boundaries on multipage streams. It
consists of a sample of 44,769 PDF documents from the Truth Tobacco Industry
Documents (TTID) archives.
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B Visualization of Proposed DC Datasets

As we have contributed two novel datasets consisting of multipage documents in
PDF format, adding visualizations is non-trivial. The datasets are hosted at the
HuggingFace Hub (https://huggingface.co/datasets/bdpc), for which at
the time of submission, the dataset viewer does not support PDF data. Rather
than adding examples in the manuscript, which is tedious for PDF documents
with multiple pages, we have built an interactive app (https://huggingface.
co/spaces/jordyvl/viz_bdpc). This allows for the visualization of samples
from the proposed datasets, with an additional filter on the labels, whereas
both datasets follow the original RVL-CDIP label taxonomy.

https://huggingface.co/datasets/bdpc
https://huggingface.co/spaces/jordyvl/viz_bdpc
https://huggingface.co/spaces/jordyvl/viz_bdpc
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Appendix - DUDE

A Baseline Experiments Setup

In this Section, we describe the implementation details1 for the architectures
and inference methods used in our benchmark.

A.1 Hyperparameter Defaults

Refer to Table C.1.

A.2 Generative LLM Prompt Fine-tuning

The performance of GPT3.5 models was assessed in two settings: 0-shot and
4-shot. In the 0-shot setting, the prompt included instructions similar to those
provided to annotators to teach them how to annotate. In the 4-shot setting, the
prompt was enhanced with the content of a single document from the training
set along with four questions of different types (extractive, abstractive, list, and
not answerable) to better gauge the models’ abilities.

The 0-shot prompt is analogous to the 4-shot prompt, but the key distinction is
that it lacks the first document and the example question-and-answer pairs.

1Main framework used: https://github.com/rubenpt91/MP-DocVQA-Framework
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Hyper-Parameter T5 T5+2D HiVT5

Epochs 10 10 10
Warm-up
(iterations) 1000 250 1000

Optimizer Adam, AdamW Adafactor Adam
Gradient acc. False 8 False
Lower case True True True
Max. Seq. Length 512, 8192 512, 8192 20480
Generation
(Max. Tokens) 100 100 50

Batch size 3 8 1
Learning rate 1E-04, 2E-04 2E-04 2E-04
Training time
(per epoch) 1h, 10h 1.5h, 5h 10h

GPU Hardware TITAN RTX,
A100

A100
(80GB)

TITAN RTX
(24GB)

Table C.1. Hyperparameters used for fine-tuning T5, T5-2D and HiVT5 on DUDE.
When two values are placed in a single column, they refer to the model’s versions with
512 and 8192 input sequence length, respectively.

For the inference process, we utilized the prompt completion default settings
outlined in the OpenAI documentation, with the exception of the temperature
parameter, which was lowered to a value of 0.0. This adjustment was made
to ensure that the output would be more deterministic and focused, with less
emphasis on generating creative variations.

Only after our prompting experiments had been completed, we realized the
opportunity to assess confidence estimation using chained prompts (Please give
a confidence between 0 and 1 about how certain you are this is the answer.) as
in [219]. Since we did not save our dialogue states and considered the expenses,
we leave this for future work.

A.3 Confidence Estimation

This Subsection details confidence scoring functions for the baselines, as this is
not reported in standard practice.

We define confidence as the predicted probability of the top-1 prediction, often
arising as the largest value from softmax normalization of logits from a final
model layer (head).
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Encoder-based models will output logits for all possible start and end positions
of the answer within the provided context. While the predicted answer of such
a span prediction architecture will come from the highest valid (no negative
span) combination of the sum of a start and end logit, the predicted answer
confidence can be obtained by the following procedure (BS: batch size and S:
sequence length):

% # Standard span prediction forward call
% outputs = model(**inputs, start_positions=start_positions,

end_positions=end_positions)↪→

% # Assumes masking all padding and special tokens after softmax with 0
% start = outputs.start_logits.softmax(dim=1)
% .unsqueeze(dim=0).unsqueeze(dim=-1) #1 x BS x S x 1
% end = outputs.end_logits.softmax(dim=1)
% .unsqueeze(dim=0).unsqueeze(dim=1) #1 x BS x 1 x S

% # Compute the probability of each valid (end < start) start, end pair
% candidate_matrix = torch.matmul(start, end).triu().detach().numpy() # 1 x BS x

S x S↪→

# Obtain highest scoring candidate span by multi-index argmax
flat_probs = candidate_matrix.reshape((1, -1)) # BS x S*S
batch_idx, start_idx, end_idx = np.unravel_index(np.argmax(flat_probs, 1),

candidate_matrix.shape)[1:]↪→

batch_answer_confs = candidate_matrix[0, batch_idx, start_idx, end_idx]

Decoder-based models are not restricted to spans and can output an arbitrary,
though often controllable, amount of text tokens, indicated as S′. The logits
at the final layer take the shape of BS × S′ × V , where V is the tokenizer’s
vocabulary size (32.1K for T5-base). The following confidence estimation
procedure is applied for decoder outputs:

# Standard decoder-based greedy forward pass (without labels)
outputs = model.generate(**input_ids, output_scores=True,

return_dict_in_generate=True)↪→

% # BS x S' x V, dropping EOS token and applying softmax + argmax per token
% batch_logits = torch.stack(outputs.scores, dim=1)[:, :-1, :]
% decoder_outputs_confs = torch.amax(batch_logits.softmax(-1), 2)

% # Remove padding from batching decoder output of variable sizes
% decoder_outputs_confs_masked = torch.where(
% outputs.sequences[:, 1:-1] > 0,
% decoder_outputs_confs,
% torch.ones_like(decoder_outputs_confs))

# Multiply probability over tokens
batch_answer_confs = decoder_outputs_confs_masked.prod(1)
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A.4 Evaluation

All metric implementations (ANLS, ECE, AURC) are made available as
a standalone repository. Additionally, we provide an online service where
researchers can evaluate their methods against a blind (questions-only) test
dataset. General metric descriptions are provided in Section 2.2.3 with additional
implementation details and motivated design choices. While ANLS can account
for shortcomings of OCR and formatting issues, evaluation of generated text is
notoriously complex [377] and requires more research.

B Qualitative Examples

As is customary, we provide some interesting, handpicked test set examples
with predictions from some of the baselines in our study.



QUALITATIVE EXAMPLES 237

Low complexity. Where the document has been printed?
Simple, extractive question, plain-text evidence.

Source Answer ANLS Conf.
Ground truth New Delhi, India
Human India 0.0 —
T5 IS : 9304 - 1979 0.0 0.56
ChatGPT The document does

not mention where
it has been printed.

0.0 —

GPT3 Bela Pack n Print.
New Delhi, India

0.0 —

T5-2D New Delhi, India 1.0 0.09
HiVT5 Page 1 0.0 0.18
Longformer new delhi, india 1.0 0.72
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High complexity. Is there any redacted section on the document?
Abstractive question that requires knowledge about possible document elements.

Source Answer ANLS Conf.
Ground truth No
Human No 1.0 —
T5 yes 0.0 0.17
ChatGPT [Not-answerable] 0.0 —
GPT3 [Not-answerable] 0.0 —
T5-2D No 1.0 0.43
HiVT5 Yes 0.0 0.55
LayoutLMv3 approved for release 0.0 0.01

Requires arithmetic. What is the difference between how much Operator II
and Operator III makes per hour?
The question requires table comprehension, determining relevant values, dividing
extracted integers, and correcting the subject-verb agreement.

Source Answer ANLS Conf.
Ground truth $5
Human $5 1.0 —
T5 200 0.0 0.28
ChatGPT $5 per hour. 0.0 —
GPT3 Operator II ($17/hr)

| Operator III
($22/hr)

0.0 —

T5-2D [Not-answerable] 0.0 0.31
HiVT5 [Not-answerable] 0.0 0.15
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Visual evidence (chart). What is the maximum percentage of the blue graph
line on page 8?
A highly demanding question that requires simultaneous competency of visual
comprehension (locating chart and line color), navigating through layout
(determining adequate page), and numerical comparison (deciding on the highest
value).

Source Answer ANLS Conf.
Ground truth 75%
Human 75 0.7 —
T5 76 0.0 0.25
ChatGPT [Not-answerable] 0.0 —
GPT3 76% 0.7 —
T5-2D 32.0 0.0 0.00
HiVT5 45% 0.7 0.05
BigBird 32 0.0 0.47
LayoutLMv3 80% 0.0 0.15



240 APPENDIX - DUDE

Visual evidence (handwriting). What is the handwritten date on page 1?

The question requires visual comprehension (recognition of handwriting) and
layout navigation (determining the adequate page).

Source Answer ANLS Conf.
Ground truth 13-XII-50
Human 13-XII-50 1.0 —
T5 1977-01-01 0.0 0.24
ChatGPT [Not-answerable] 0.0 —
GPT3 15 December 1950 0.0 —
T5-2D 1950-12-15 0.0 0.24
HiVT5 1977-07-01 0.0 0.11
BERTQA 2006 / 1 0.0 0.5
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Requires counting. How many pages have a signature?
The question requires visual comprehension (recognition of signature), knowledge
about layout, and counting.

Source Answer ANLS Conf.
Ground truth 2
Human 2 1.0 —
T5 1 0.0 0.01
ChatGPT 4 0.0 —
GPT3 [Not-answerable] 0.0 —
T5-2D 4 0.0 0.69
HiVT5 4 0.0 0.41
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Visual evidence (map), multi-hop. Which states don’t have any marijuana
laws?
The multi-hop question requires visually comprehending the map and linking
knowledge from its legend with depicted regions.

Source Answer ANLS Conf.
Ground truth ID | SD | KS
Human ID | SD | KS 1.0 —
T5 WA ME MT ND

MN OR VT ID NH
SD WI NY MA MI

0.0 0.28

ChatGPT [Not-answerable] 0.0 —-
GPT3 American Samoa 0.0 —-
T5-2D i 0.0 0.03
HiVT5 - 0.0 0.02

B.1 Qualitative Examples - Competition

We provide some interesting, hand-picked test set examples with predictions
from the submitted competition methods.

Low complexity. Who is the president and vice-chancellor? Despite
the question’s relatively straightforward nature, some systems struggle with
providing the appropriate answer. One can hypothesize it is the result of limited
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context (the answer is located at the end of the document), i.e., models either
hallucinate a value or provide a name found earlier within the document.

Source Answer ANLS Conf.
Ground truth Jack N. Lightstone
Human Jack N. Lightstone 1.0 —
T5-base James L. Turk 0.0 0.0
MMT5 james l. turk 0.0 1.0
UDOP+BLIP2+GPT jack n. lightstone 1.0 0.9
HiVT5+modules Jack N. Whiteside 0.6 0.6

Requires graphical comprehension. Which is the basis for jurisdiction?
To provide a valid answer, the model needs to comprehend the meaning of
the form field and recognize the selected checkbox. None of the participating
systems was able to spot the answer correctly.

Source Answer ANLS Conf.
Ground truth U.S. Goverment Plain-

tiff
Human U.S. Goverment Plain-

tiff
1.0 —

T5-base Declaration of taking 0.0 0.1
MMT5 united states district

court
0.0 1.0

HiVT5+modules 0.0 1.0
UDOP+BLIP2+GPT public purpose 0.0 0.4

Requires comparison. In which year does the Net Requirement exceed
25,000? The question requires comprehending a multipage table and spotting if
any values fulfill the posed condition. Some of the models resort to plausible
answers (one of the three dates that the document covers), whereas others
correctly decide there is no value exceeding the provided amount.

Source Answer ANLS Conf.
Ground truth [Unanswerable]
Human [Unanswerable] 1.0 —
T5-base [Unanswerable] 1.0 0.2
MMT5 2018 0.0 1.0
UDOP+BLIP2+GPT [Unanswerable] 1.0 1.0
HiVT5+modules 2017 0.0 0.8

Requires arithmetic. What is the difference between how much Operator II
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and Operator III make per hour? The question requires table comprehension,
determining relevant values, and dividing extracted integers. None of the
participating models was able to fulfill this requirement.

Source Answer ANLS Conf.
Ground truth $5
Human $5 1.0 —
T5-base $0.00 0.0 0.0
MMT5 65% 0.0 1.0
UDOP+BLIP2+GPT -1.5 mile 0.0 0.0
HiVT5+modules $5,700.00 0.0 0.4

Requires counting and list output. What are the first two behavioral and
intellectual disabilities of people with FASDs? It seems most of the models
correctly recognized that this type of question requires a list answer but either
failed to comprehend the question or provided a list with incorrect length
(incomplete or with too many values).

Source Answer ANLS Conf.
Ground truth Learning disabilities | Hyperactivity
Human learning disabilities 0.5 —
T5-base Early embryo brain development | External Genitals 0.0 0.0
MMT5 heart beats | difficulty with attention | lung function

| hyperactivity | problem with judgment | speech and
language delays

0.2 1.0

UDOP+BLIP2+GPT hyperactivity | speech and language delays 0.5 0.2
HiVT5+modules HIV/AIDS 0.0 0.6
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Appendix - KDD

A Code and Datasets

The proposed KD-VDU experimentation framework is available at https:
//github.com/Jordy-VL/DistilDoc_ICDAR24/tree/main/src. This includes
the DIC benchmarking that is made fully compatible with HuggingFace
transformers, even allowing arbitrary image classification models and (document)
image datasets from HuggingFace hub.
The DLA benchmark is built around the Detectron2 framework, with
additional scripts for efficiency evaluation, visualization, and document data
preparation for downstream tasks. Downstream task experiments are made
available as a fork of the original LATIN-prompt [482] implementations with
additional modifications (4-bit quantization, question type ANLS evaluation,
InfographicsVQA dataloader, structure-preserving OCR respecting DLA
tokens).

B Implementation Details

DIC All runs are documented with hyperparameter configuration and
commandline arguments in a wandb project for complete transparency in
experiment results and reproducibility.

For RVL-CDIP, both teacher and student training is carried out for 10 epochs
with a batch size of (32 ViT, 64 ResNet) and AdamW with weight decay 5e-4
and a learning rate of 1e-4 with a linear warmup of 10%. For Tobacco-3482,
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the default recipe is similarly trained for 100 epochs. All experiments were
performed on a single NVIDIA GeForce RTX 3090 GPU (24GB GPU vRAM).
For some feature-based KD methods, the batch size was necessarily lowered to 16
due to memory constraints. KD method hyperparameters were cross-validated
to find the best performing configuration for each method, and are listed in the
main manuscript result tables.

DLA In this paper, MaskRCNN detection architecture is considered with two
different backbones (1) CNNs: ResNet50 and ResNet101 (2) Transformers: ViT
base and ViT tiny. All the detection models are trained with Detectron2 [499]
which uses the PyTorch deep learning library. The hyperparameters used are
the following: (a) learning rate of 1e-4 (b) iterations 300k (c) optimizer: Adam
(d) batch size: 16 (e) ROI heads predictions: 128 (f) NMS threshold: 0.4 (g)
confidence threshold: 0.6 For reproducibility, we share the exact config files
used for each experiment as part of the Supplementary,

Teacher and student model variants Tables D.1 and D.2 indicate the
differences between used teacher and student models in terms of parameterization
and efficiency.

Table D.1. Details of Vision Transformer model variants [101].

Variants Settings of D/ViT
Layers Width FFN Heads #Param

Tiny (T) 12 192 768 3 5.5M
Small (S) 12 384 1536 6 21.7M
Base (B) 12 768 3072 12 85.8M

Table D.2. Details of the efficiency of model checkpoints considered in this work.

Model GFLOPs GMACs Params (M)
microsoft/resnet-101 15.65 7.8 42.5
microsoft/resnet-50 8.21 4.09 23.51
google/vit-base-patch16-224 35.15 17.56 86.39
microsoft/dit-base 35.15 17.56 85.81
WinKawaks/vit-small-patch16-224 9.21 4.6 21.81
WinKawaks/vit-tiny-patch16-224 2.51 1.25 5.56

Downstream We extended the implementation of [482] to incorporate Llama-2
[452] and build a similar dataloader for InfographicsVQA [310]. To enable strict
compatibility, we used the same unified OCR format, DUE [47], for all datasets.
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This facilitated easy incorporation of DLA tokens into the OCR tokens without
disrupting the logic behind the original layout-aware representation of document
text. As it involved zero-shot evaluation, no finetuning was attempted for this
task, and while it could be left for future work, we want to iterate that we
sought to explore the innate ability of LLMs to ingest DLA-enriched prompts,
and not the downstream task performance itself.

C Task Definitions

The definitions have been incorporated as part of the fundamentals. Here we
will only point to details that are not included in the main manuscript.

To place each task in the context of document inputs, we define the following
tasks and their respective inputs with common notation. We follow notation
established in [470] for document page inputs.

A page p consists of an image v ∈ RC×H×W (number of channels, height,
and width, respectively) with T word tokens u = {wt}Tt=1 organized according
to a layout structure s =

{(
x1
t , y

1
t , x

2
t , y

2
t

)}T
t=1, typically referred to as token

bounding boxes, coming from OCR or available from a born-digital document.

DIC As a prototypical instance of classification [472] the goal is to learn an
estimator f : X → Y using N supervised input-output pairs (X,Y ) ∈ X × Y
drawn i.i.d. from an unknown joint distribution P (X,Y ). In the context of
DIC, the input space X is the set of all document images, and the output space
Y is the set of all document classes (e.g., invoice, email, form, advertisement,
etc.). The goal is to learn a function f that maps a document image x ∈ X to
a document class y ∈ Y, such that f(x) = y. Covariate shift [418] occurs when
the input distribution P (X) changes between the training and evaluation sets,
but the conditional distribution P (Y |X) remains the same. Put plainly, both
sets share the same document classes, yet the visual appearance, layout and
content of the document images can be different. For example, RVL-CDIP [241]
contains more modern documents with color, whereas all RVL-CDIP documents
are greyscale.

DLA The task of DLA can be formulated as a function that processes a
document image input and outputs structured information about its logical
layout elements (e.g., text blocks, headers, figures, charts, plots, tables). Let
DLA(x) represent the output predictions of the DLA process as a set of tuples,
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where each tuple (bj , cj , pj) represents one of J detected logical layout element.

DLA(x) = {(bj , cj ,mj)}Jj=1 (D.1)

For each, bj denotes the bounding box for the j-th detected element, defined
as (xj , yj , wj , hj) (in the popular COCO format). cj is the class label for the
j-th element, indicating its object category. mj is a set of additional properties
or information (metadata attributes, predicted scores, considered optional)
associated with the j-th element, which can vary depending on the type and
context of the layout components.

Zero-shot Document Visual Question Answering Given a document d and
a question q, the goal of zero-shot DocVQA is to predict the answer a to the
question q from the document, assuming a single document image for simplicity.
Following the text-only LLM approach in [482], each document image requires
to be translated to text, either from OCR or from a born-digital document, and
the question is translated to a prompt p. The prompt p is a sequence of tokens
that is fed to the LLM model, together with a potential task instruction, and
the document image text D, which is structured following a heuristic procedure
operating on the text tokens (T ) and respective bounding boxes (see Table 6.2).

D Additional Experiment Results

Table D.3. Results of different KD strategies benchmarked for ResNets applied on the
RVL-CDIP dataset.

Dataset Teacher Student Method ACC AURC ECE
RVL-CDIP ResNet-101 – Baseline 0.819 0.043 0.017

– ResNet-50 Baseline 0.783 0.059 0.039
RVL-CDIP1k ResNet-101 ResNet-50 Vanilla [τ = 2.5, α = 0.5] 0.783 0.059 0.039
RVL-CDIP1k ResNet-101 NKD [τ = 1, γ = 1.5] 0.785 0.063 0.073
RVL-CDIP1k ResNet-101 MSE 0.786 0.058 0.032
RVL-CDIP1k ResNet-101 SimKD [∅ projector] 0.769 0.067 0.025
RVL-CDIP1k ResNet-101 SimKD [CNN] 0.797 0.053 0.023
RVL-CDIP1k ResNet-101 FitNet [middle] 0.758 0.087 0.178
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Table D.4. Results of different KD strategies benchmarked for ResNets applied on the
Tobacco-3482 dataset.

Student Method ACC ECE AURC
– Teacher 0.445 0.102 0.360

ResNet-50 CE 0.552 0.096 0.256
CE+KD 0.667 0.127 0.149
NKD 0.436 0.076 0.330
MSE 0.399 0.083 0.379

SimKD [CLS+MLP] 0.176 0.250 0.768
SimKD [CNN] 0.314 0.103 0.429

FitNet 0.577 0.085 0.219

Table D.5. Results of different KD strategies benchmarked for ViT-B applied on the
Tobacco-3482 datasets.

Student Method ACC ECE AURC
Teacher 0.876 0.082 0.040

ViT-S CE 0.783 0.096 0.071
CE+KD 0.814 0.072 0.063
NKD 0.803 0.094 0.066
MSE 0.807 0.161 0.062

SimKD [CNN] 0.836 0.125 0.072
FitNet 0.821 0.151 0.059

ViT-T NKD 0.792 0.064 0.069
MSE 0.798 0.198 0.074

SimKD [CLS+MLP] 0.811 0.599 0.065
SimKD [CNN] 0.810 0.135 0.081

FitNet 0.805 0.160 0.070
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Table D.6. Results of different KD strategies benchmarked for DiT-B applied on the
Tobacco-3482 dataset.

Student Method ACC ECE AURC
Teacher 0.916 0.109 0.020

ViT-S CE 0.820 0.081 0.059
CE+KD 0.825 0.086 0.064
NKD 0.813 0.101 0.055
MSE 0.818 0.090 0.063

SimKD [CLS+MLP] 0.829 0.153 0.056
SimKD [CNN] 0.810 0.144 0.062

FitNet 0.827 0.152 0.067
ViT-T CE 0.810 0.066 0.065

CE+KD 0.816 0.078 0.065
NKD 0.807 0.087 0.063
MSE 0.811 0.072 0.061

SimKD [CLS+MLP] 0.778 0.162 0.093
SimKD [CNN] 0.783 0.187 0.079

FitNet 0.793 0.168 0.077

Table D.7. Results for DLA-KD experiments on PRImA dataset.

Teacher Student Method mAP
Vit-B - Teacher 36.01

Resnet-101 - Teacher 38.34
- ViT-T Baseline 32.64
- Resnet-50 Baseline 35.61

Resnet-101 Resnet-50 SimKD 35.00
ReviewKD 34.31

Vit-B ViT-T SimKD 32.05
ReviewKD 31.94

D.1 Tobacco-3482 Results

D.2 PRImA Results

D.3 RVL-CDIP-N Results

D.4 Downstream DocVQA Results

D.5 Ablation Experiments

The experiments with random student weight initialization (Tables D.12
and D.13) show that ViTs suffer more from student weight initialization, which is



ADDITIONAL EXPERIMENT RESULTS 251

Table D.8. Evaluation including relative runtime of KD methods on RVL-CDIP-N,
where from left-to-right results are grouped per KD strategy, per backbone, per student
size.

Table D.9. Results for KD methods when averaged over architectures and student
sizes on RVL-CDIP-N.

KD method ACC ECE AURC
Teacher 0.611 0.120 0.152
CE 0.573 0.119 0.215

CE+KD 0.519 0.184 0.298
NKD 0.524 0.137 0.259
MSE 0.490 0.205 0.308

SimKD [CLS+MLP] 0.613 0.202 0.216
SimKD [CNN] 0.629 0.273 0.197

FitNet 0.534 0.281 0.246

evidenced by an average accuracy of 0.5962 for ViT-S/Trand compared to 0.7675
for R50rand. When the student initialization is not dependent on pretraining,
NKD pops up as a performant method, showing the versatility of response-based
methods when transfer of feature representations is harder.
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Table D.10. Validation ANLS (scaled to %) of Llama-2-7b-chat [452] on SP-DocVQA
[309], with a KD-DLA model enriching the prompt.

prompt DLA ANLS Image/Photo Yes/No Figure/diagram Form Free_text Handwritten Layout Others Table/list

plain 4.3 4.25 5.36 1.46 2.69 8.99 1.74 6.1 7.72 1.87
space 4.61 2.97 0.0 1.25 3.31 7.55 2.14 6.48 8.45 2.59
task 57.63 45.38 51.52 34.97 67.88 69.71 53.19 55.51 55.78 53.81
+DLA Resnet-101 57.76 43.31 47.02 35.01 66.84 70.03 52.27 57.16 58.77 52.22

Resnet-101 57.55 44.44 49.4 34.0 66.99 68.64 51.97 56.52 58.23 52.64
Resnet-50 ReviewKD 57.76 43.31 47.02 35.01 66.84 70.03 52.27 57.16 58.77 52.22
Resnet-50 SimKD 57.53 45.45 51.52 35.28 67.39 68.73 52.23 56.71 56.5 52.2
Vit-B 58.39 44.43 41.67 34.81 66.38 67.82 52.1 59.19 55.91 52.79
Vit-T 58.65 44.7 50.3 36.19 67.65 68.0 52.49 59.29 57.03 52.72
Vit-T ReviewKD 57.96 45.9 47.32 33.49 66.68 68.92 51.15 58.46 56.32 51.89
Vit-T SimKD 58.58 45.09 49.43 34.92 67.28 70.64 52.19 58.44 57.68 52.82

task_space 62.46 42.95 49.43 40.93 71.15 70.59 55.87 61.87 61.05 58.31
+DLA Resnet-101 61.86 41.51 48.24 40.63 71.12 69.39 54.56 61.38 58.62 57.48

Resnet-50 62.08 39.62 49.13 42.4 71.27 70.37 54.43 61.54 59.86 57.59
Resnet-50 ReviewKD 62.14 44.09 42.26 40.39 70.6 69.69 53.07 61.8 60.14 58.29
Resnet-50 SimKD 61.95 43.93 44.97 40.57 71.02 70.12 54.95 61.43 60.74 57.69
Vit-B 61.2 44.58 49.13 40.28 68.95 68.39 52.81 61.38 56.44 56.7
Vit-T 58.65 44.7 50.3 36.19 67.65 68.0 52.49 59.29 57.03 52.72
Vit-T ReviewKD 61.58 46.25 46.75 37.84 69.37 69.27 53.86 61.5 58.44 57.63
Vit-T SimKD 61.46 44.79 48.24 40.25 69.55 69.95 53.15 61.0 58.18 57.05

Table D.11. Validation ANLS (scaled to %) of Llama-2-7b-chat [452] on
InfographicsVQA [310], with a KD-DLA model enriching the prompt.

prompt DLA ANLS Arithmetic Comparison Counting Figure Map Multi-span Non-extractive Question span Single span Table/list Text Visual/layout

plain 0.81 0.0 0.0 0.23 0.42 0.0 0.93 0.12 0.64 0.98 1.0 1.93 0.47
space 0.69 0.0 0.0 0.0 0.32 0.0 0.9 0.0 0.53 0.86 1.08 1.55 0.0
task 29.08 14.15 26.94 11.35 27.52 19.1 19.79 12.79 48.44 33.79 26.17 35.24 26.39
+DLA Resnet-50 27.94 14.1 26.21 10.28 26.19 20.25 17.7 12.28 45.14 32.7 24.79 34.3 26.96

Resnet-101 27.86 12.12 24.96 11.35 26.32 18.82 18.32 11.93 44.81 32.62 24.51 33.89 25.94
Resnet-50 ReviewKD 28.16 13.33 25.81 12.05 26.39 22.11 21.06 12.93 46.95 32.42 25.02 34.18 26.86
Resnet-50 SimKD 27.65 13.79 25.78 9.95 26.16 19.53 18.78 11.97 45.95 32.17 24.31 33.8 26.31
Vit-B 28.36 14.93 29.15 7.64 27.05 19.0 19.41 11.21 46.87 33.35 25.56 34.59 26.69
Vit-T 28.32 15.06 28.02 9.58 27.25 19.01 17.0 11.82 45.67 33.48 25.02 34.81 28.33
Vit-T ReviewKD 28.23 13.35 27.7 10.78 26.39 20.03 20.4 11.92 45.95 32.95 25.9 35.28 27.46
Vit-T SimKD 28.18 14.82 26.31 9.6 26.19 18.96 18.09 12.51 45.36 32.87 24.93 34.71 30.98

task+space 27.97 9.78 25.13 6.99 25.93 21.04 22.33 8.2 43.36 33.53 25.76 35.06 27.47
+DLA Resnet-50 27.14 8.12 23.78 6.27 24.68 18.67 19.26 7.0 41.95 33.03 25.93 34.07 28.48

Resnet-101 28.08 9.49 24.31 8.04 25.88 19.72 21.01 8.63 41.23 33.77 25.87 35.24 28.44
Resnet-50 ReviewKD 28.07 9.59 24.18 8.41 25.88 18.67 21.37 9.01 42.86 33.53 26.2 35.49 27.8
Resnet-50 SimKD 27.68 9.98 24.45 7.11 25.71 20.65 20.87 8.4 43.36 33.19 25.51 34.56 27.81
Vit-B 28.05 9.92 25.28 7.83 26.28 19.0 21.85 8.82 41.84 33.54 25.57 34.6 29.17
Vit-T 27.0 9.06 23.19 7.34 25.81 21.9 18.9 8.04 39.82 32.65 23.69 33.93 28.33
Vit-T ReviewKD 28.47 10.89 25.9 5.42 26.8 22.23 20.59 8.28 45.67 34.24 26.44 35.81 29.14
Vit-T SimKD 27.97 10.56 25.54 8.35 26.23 20.65 20.34 9.19 44.08 33.43 25.04 33.89 30.49
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Table D.12. Results of different KD strategies benchmarked for ViT-B teacher with
randomly initialized (rand) ViT students applied on the RVL-CDIP dataset.

Teacher Student Method ACC AURC ECE
ViT-B_rand – Baseline 0.540 0.235 0.078

– ViT-Srand Vanilla [τ = 2.5, α = 0.5] 0.613 0.175 0.220
ViT-B NKD [τ = 1, γ = 1.5] 0.579 0.193 0.046
ViT-B MSE 0.626 0.159 0.203
ViT-B SimKD [CLS+MLP] 0.609 0.181 0.120
ViT-B SimKD [CNN] 0.681 0.181 0.297
ViT-B FitNet [middle] 0.628 0.161 0.155
ViT-B ViT-Trand Vanilla [τ = 2.5, α =] 0.560 0.212 0.141
ViT-B NKD [τ = 1, γ = 1.5] 0.552 0.215 0.025
ViT-B MSE 0.579 0.198 0.232
ViT-B SimKD [CLS+MLP] 0.582 0.199 0.196
ViT-B SimKD [CNN] 0.663 0.205 0.316
ViT-B FitNet [middle] 0.570 0.207 0.143

Table D.13. Results of different KD strategies benchmarked for ResNet-101 teacher
with randomly initialized (rand) ResNet-50 students applied on the RVL-CDIP
dataset.

Teacher Student Method ACC AURC ECE
R101_rand – Baseline

– R50 Baseline 0.769 0.015 0.066
R101 R50rand Vanilla [τ = 2.5, α = 0.5] 0.760 0.017 0.071
R101 NKD [τ = 1, γ = 1.5] 0.770 0.051 0.072
R101 MSE 0.765 0.022 0.068
R101 SimKD [CLS+MLP] 0.766 0.037 0.068
R101 SimKD [∅ projector] 0.774 0.025 0.063
R101 FitNet [middle] 0.760 0.177 0.078
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