

ICML 2020 Workshop on

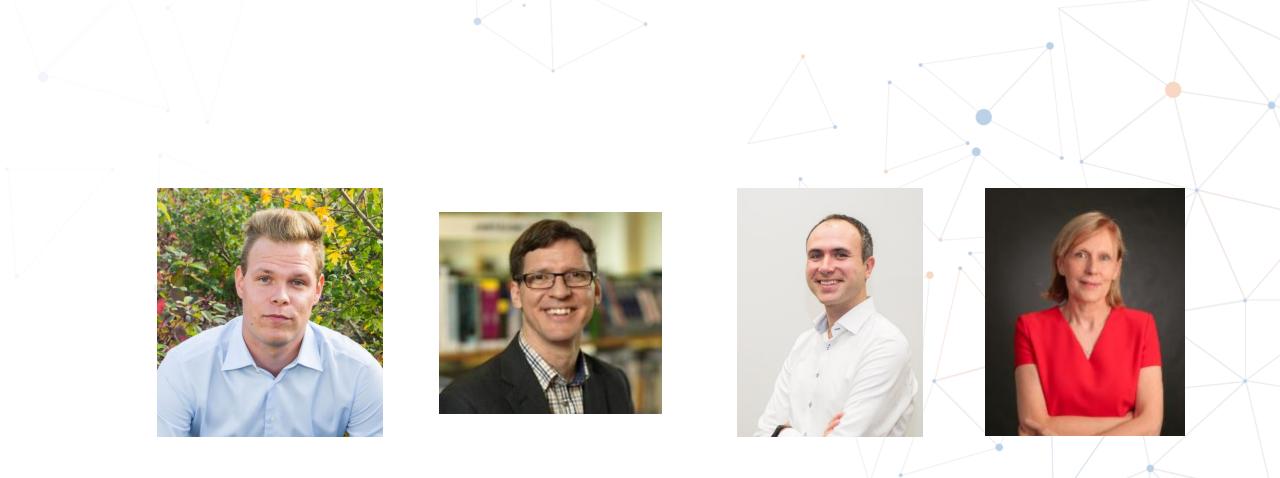
Uncertainty & Robustness in Deep Learning

Document	type: [contract]
Contract	№°: [123-456]

Predictive Uncertainty for Probabilistic Novelty Detection in Text Classification

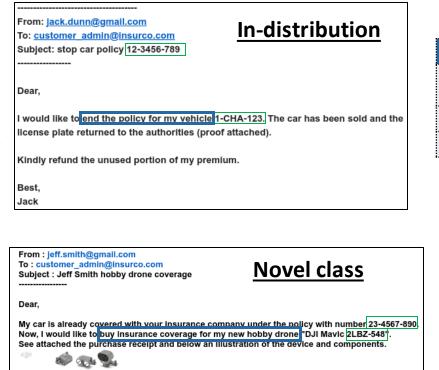
Jordy Van Landeghem

17-07-2020



Jordy Van Landeghem, Matthew Blaschko, Bertrand Anckaert, and Marie-Francine Moens: <u>Predictive Uncertainty for Probabilistic Novelty Detection in Text Classification</u>. *ICML Workshop on Uncertainty and Robustness in Deep Learning*, 2020.

Predictive uncertainty is a key enabler for reliable ML



Will you send me a proposal with monthly coverage fees? Kind regards,

contract.fit

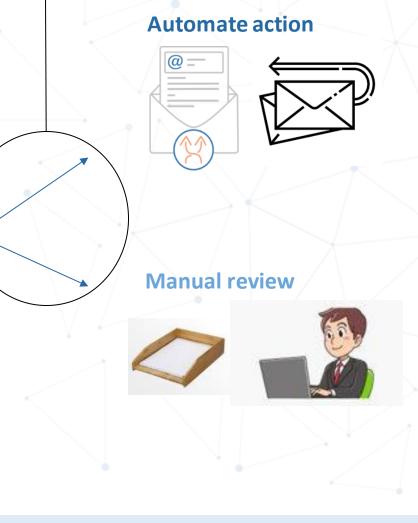
Jeff

label	prediction	confidence
process	car policy cancellation	99%
policy number	12-3456-789	95%
licenseplate	1CHA123	98%

label	prediction	confidence
process	car policy contract start	98%
policy number	23-4567-890	95%
license plate	2LBZ-548	75%

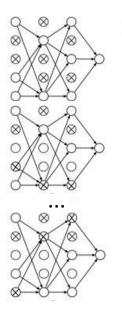
Catastrophically overconfident

Decision-making under Predictive Uncertainty



3

Predictive Uncertainty in practice



Monte Carlo Dropout (Gal & Ghahramani 2016)

Algorithm 1: MCdropout **Input:** data x^* , encoder $g(\cdot)$, prediction network $h(\cdot)$, dropout probability p, number of iterations B**Output:** prediction \hat{y}_{mc}^* , uncertainty η_1

1: for b = 1 to B do 2: $e^*_{(b)} \leftarrow VariationalDropout(g(x^*), p)$ 3: $z^*_{(b)} \leftarrow Concatenate(e^*_{(b)}, extFeatures)$ 4: $\hat{y}^*_{(b)} \leftarrow Dropout(h(z^*_{(b)}), p)$ 5: end for // prediction 6: $\hat{y}^*_{mc} \leftarrow \frac{1}{B} \sum_{b=1}^B \hat{y}^*_{(b)}$ // model uncertainty and misspecification 7: $\eta^2_1 \leftarrow \frac{1}{B} \sum_{b=1}^B (\hat{y}^*_{(b)} - \hat{y}^*)^2$

Residual heteroscedastic loss & extensions

(Kendall & Gal 2017; Xiao & Wang 2019)

8: return ŷ^{*}_{mc}, η₁

$$\mathcal{L}_{\text{clf}}(\hat{\theta}) = \sum_{i=1}^{N} \log \frac{1}{T} \sum_{t=1}^{T} \exp\left(\mathbf{u}_{i,c}^{(t)} - \log \sum_{k} \exp \mathbf{u}_{i,k}^{(t)}\right) + \log T \quad (1)$$

with N the number of training examples passing through an instance t of the model $f_{\hat{\theta}_t}(x) + \boldsymbol{\sigma}^{(t)}$ to generate for example i a sampled logit vector \mathbf{u}_i^t , where predicted value for class k, $\mathbf{u}_{i,k}^{(t)}$, and c the index of the ground truth class.

I.Regularization (dropout, L2 weight decay)II.Stochastic output layer $\mathcal{N}(f_{\hat{\theta}}(x), diag(\boldsymbol{\sigma}(x)^2))$ III.Attenuated learned loss

Uncertainty quantification

Quantity	Formula
Softmax-score	$S = \underset{k}{\operatorname{argmax}} \frac{\exp f_{\hat{\theta},k}(x^*)}{\sum_{i=1}^{K} \exp f_{\hat{\theta},i}(x^*)}$
Predictive Entropy	$H = -\sum_{k=1}^{K} P(y_k x^*, \hat{\theta}) \log P(y_k x^*, \hat{\theta})$
Model Uncertainty	$\hat{\sigma}_{model} = \frac{1}{T} \sum_{t=1}^{T} \left(\hat{p}_t - \bar{p} \right)^2$
Data Uncertainty	$\hat{\sigma}_{data} = \frac{1}{T} \sum_{t=1}^{T} \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{\sigma}_{k}^{(t)}(x^{*})$

Methodology & experiments

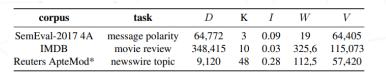
Research question:

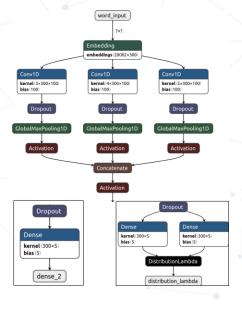
How **reliable** are Monte Carlo Dropout-based uncertainty estimates for unsupervised detection of novel class data in text classification?

Methodology:

- 3 real-world multi-class news and sentiment classification datasets
- 1-D ConvNets for text classification (*Kim 2014*)
- 5 uncertainty quantification model setups
- Robustness protocol of *leave-one-class-out*

Monte Carlo dropout							
Architecture	deterministic	stochastic	*no dropout				
softmax	2	3	1				
heteroscedastic	4	5					





Key findings (1/2)

 Necessary regularization for uncertainty estimation proves to not always guarantee increase in model performance.

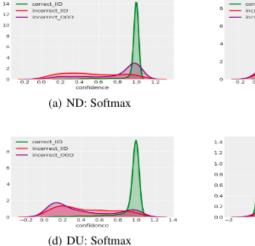
Measure	Acc	$MSE\left(\downarrow\right)$	F1(m)	F1(M)	$\text{NLL}(\downarrow)$	$\text{ECE}(\downarrow)$	$Brier(\downarrow)$	Softmax (µ)	Entropy (μ)	$\mathrm{MU}\left(\mu\right)$	$\mathrm{DU}\left(\mu \right)$
SemEval No Dropout	0.5831	0.5389	0.5766	0.5618	0.9979	0.1494	0.5728	0.7325	0.901	/	/
SemEval Baseline	0.568	0.5923	0.5652	0.5525	0.9158	0.0195	0.5491	0.5838	1.2829	/	/
SemEval Model Uncertainty	0.5712	0.5785	0.5666	0.5526	0.9601	0.0979	0.5653	0.6692	1.0765	0.115	/
SemEval Data Uncertainty	0.567	0.5928	0.5657	0.5554	0.9172	0.0245	0.55	0.5895	1.2718	/	0.0181
SemEval DMU	0.5808	0.5591	0.5761	0.563	0.9466	0.0915	0.558	0.6714	1.0741	0.0055	0.0143
IMDB No Dropout	0.4164	3.0908	0.3958	0.3563	1.4786	0.0139	0.6807	0.4208	2.142	/	/
IMDB Baseline	0.405	3.5007	0.3724	0.3287	1.5641	0.0671	0.7034	0.3379	2.5217	/	/
IMDB Model Uncertainty	0.4069	3.4787	0.3787	0.3349	1.5247	0.0124	0.6932	0.3954	2.2661	0.1426	/
IMDB Data Uncertainty	0.4067	3.3854	0.377	0.3358	1.558	0.0536	0.7022	0.3531	2.4685	/	0.0033
IMDB DMU	0.4071	3.3377	0.3774	0.3371	1.5263	0.0148	0.6945	0.4131	2.2109	0.0026	0.0026
Reuters No Dropout	0.923	30.2168	0.9145	0.6464	0.3329	0.0265	0.1147	0.9403	0.3308	/	/
Reuters Baseline	0.9293	28.1707	0.9228	0.7193	0.3364	0.0337	0.1123	0.8978	0.6704	/	/
Reuters Model Uncertainty	0.9277	27.8746	0.9209	0.7131	0.3311	0.0147	0.1054	0.9351	0.3667	0.052	/
Reuters Data Uncertainty	0.9301	25.0199	0.9243	0.7184	0.3286	0.0314	0.1112	0.8993	0.6555	/	0.0246
Reuters DMU	0.932	26.0086	0.9255	0.6957	0.319	0.016	0.1023	0.9369	0.3539	0.0003	0.0087

Table 3: This table reports on the effectiveness of the text classification using the 3 datasets. We report all metrics on the test data, respectively *classification* scores: Accuracy, Mean-Squared Error, weighted and macro F1; *calibration* metrics: Negative Log Likelihood, Expected Calibration Error (Guo et al., 2017) and Brier score (Brier, 1950); *uncertainty* measures when available and averaged over all samples, Softmax-score, Predictive Entropy, Model Uncertainty and Data Uncertainty.

Key findings (2/2)

- MC Dropout and extensions underestimate uncertainty
- Predictive entropy demonstrates superior performance

Dataset	SemEval		IMDB		Reuters		
measure	PCC	Rank	PCC	Rank	PCC	Rank	Avg Rank
nodropout softmax-score	0.0922"	12	0.1035"	10	0.2894"	12	12
nodropost entropy	-0.1115 [*]	11	-0.1339°	6	-0.3381°	11	10
baseline softmax-score	0.1419*	6	0.1332^{*}	8	0.6066*	5	6
baseline entropy	-0.1590*	1	-0.1636*	1	-0.6367*	3	1
MU softmax-score	0.1339*	8	0.1304°	9	0.5270°	9	9
MU entropy	-0.1571°	4	-0.1471°	3	-0.5732*	6	4
MU model uncertainty	-0.0734°	13	0.0052	14	0.0027	14	14
DU softmax-score	0.1396*	7	0.1414^{*}	5	0.6370°	2	5
DU entropy	-0.1590*	2	-0.1595 [*]	2	-0.6558 [*]	1	1
DU data uncertainty	-0.1465°	5	0.0106	12	-0.5539°	8	8
DMU softmax-score	0.1298*	9	0.1336*	7	0.5677*	7	7
DMU entropy	-0.1585*	3	-0.1440°	4	-0.6118°	4	3
DMU data uncertainty	-0.0170	14	-0.0546*	11	-0.0849°	13	13
DMU model uncertainty	-0.1253 [*]	10	0.0098	13	-0.4635 [*]	10	11



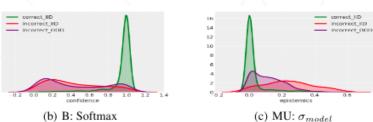
12 ____ correct IID

incorrect_IID

ncorrect_OOD

0.4 0.6 confidence

(g) DMU: Softmax



correct_IID

incorrect DOD

incorrect_IID

correct IID

incorrect_IID

mect_OOD

entropy

(e) DU: Entropy

(h) DMU: σ_{model}

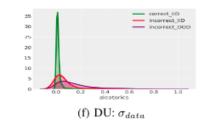
1750

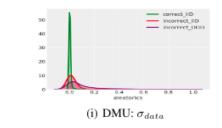
1500

1250

1000

500





Taking this forward

- a. underrepresentation of NLP in Bayesian Deep Learning research
- b. embedding in a theoretical framework
 - What does uncertainty represent in an NLP task context?
 - How does uncertainty manifest?
 - What forms of uncertainty require capture?
 - What architectures in combination with regularization methods are best suited?
- c. extended uncertainty protocols for benchmarking
- d. extended uncertainty quantification methods

Thank you!

Questions?

Poster #133

Predictive Uncertainty for Probabilistic Novelty Detection in Text Classification

Jordy Van Landeghem¹² Matthew Blaschko³ Bertrand Anckaert² Marie-Francine Moens¹

Jordy Van Landeghem jordy@contract.fit

Bibtex

@inproceedings{VanLandeghem2020a,

TITLE = {Predictive Uncertainty for Probabilistic Novelty
Detection in Text Classification},

AUTHOR = {Van Landeghem, Jordy and Blaschko, Matthew B. and Anckaert, Bertrand and Moens, Marie-Francine},

BOOKTITLE = {ICML Workshop on Uncertainty and Robustness in Deep Learning},

```
YEAR = \{2020\},\
```

}

Keywords: Predictive Uncertainty, Text Classification, Unsupervised Novelty Detection, Monte Carlo Dropout

Backup slides

- Gal, Y. and Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In international conference on machine learning, pp. 1050–1059, 2016.
- Kendall, A. and Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? In Advances in neural information processing systems, pp. 5574–5584, 2017.
- Kim, Y. Convolutional Neural Networks for Sentence Classification.arXiv preprint arXiv:1408.5882, 2014.
- Xiao, Y. and Wang, W. Y. Quantifying Uncertainties in Natural Language Processing Tasks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7322–7329, 2019.

Questions to be expected

Q	Α
Why so little datasets?	three real-world text corpora with differing number of classes and size of documents. Additional focus was the classification complexity.
Why Reuters?	For novelty detection, shows easy separable classes. Multi-label annotations ensure class separability information. Then why would uncertainty not be able to communicate on it? Would expect it to go wrong for classification in a spectrum/ordinal scale. -> going for semi-synthetic experiment not as good as an "MNIST" for NLP ⁽ⁱ⁾
Softmax thresholding and calibration	-> perfect calibration requires less uncertainty quantification. Yes, but data uncertainty can communicate on label noise, which might be captured less by calibration.
Little fine-tuning of regularization parameters	Admittedly, we would have done more fine-tuning on these parameters. However, striving for SoTa was not the goal here. We tried to find an OK out-of-the-box setting.
Why no MI?	

Research Question & Contributions

We investigate the reliability of Monte Carlo Dropout-based uncertainty estimates for unsupervised detection of novel class data in text classification and find that the studied methods underestimate uncertainty.

- We experimentally demonstrate on real-world text classification datasets that uncertainty modelling with Bayesian DL methods does not guarantee performance increase on classification and calibration metrics.
- We propose a methodology of leave-one-class-out to empirically compare the robustness of uncertainty quantities under novel class distribution shift.

Backup pictures

